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(4)

in the mini-
formula (5):

The dynamic lot size model with two objectives is
studied. The criterion of minimizing the sum of set-
up costs and holding costs is complemented by the
minimization of the stock. Solutions which are
efficient with respect to these two objectives can be
derived from parametric one-criterial models with
combined objective functions. A complete set of
efficient solutions which are distinct in their ob-
jectives can be found by a BASIC dialog program
fior personal computers.

1 .  T H E  P R O B L E M

The one-criterial problem (Wagner 1969) can be
introduced as follows: The process of production
and stock-holding for one item and I periods is
considered. The production figures xr70 forunb
period, t : 1,2, . . . , T, have to be chosen such that
given deterministic demand dr)0 is satisfied for all t
and that the total sum of set-up costs and holding
costs is minimal. The fixed set-up costs arising if
x,)0 are denoted by c>0 and the per-unit period
linear holding costs are denoted by h> 0.If the stock
at the end of r'h period is denoted by.y, the demand is
satisfied in the case that lt : !t- r * x, - 4 is non-
negative. Usually the assumption is made that the
stock equals zero at the beginning and at the end of
the considered planning period 1,2,.. ., I, i.e.

l o :  l r : 0 .

Then the model can be described by the formulae
( lHa) :

/  =  1 0 2 , . . . , 7 ,

x r70 ,  ! .70 ,

l o :  l r :  0 ,

T T
Fr : c,I  sign x,* h 

, \r ,  
--min

The second criterion consisting
mization of the stock is provided by

(2)

(3)

r r : t -v, -niiii ""'

The objective f', makes sense only if the first
criterion is also of interest, since the solution

T
x : {xr : d,l I provides always Fz:0.

The one-rii.t iut problem will be denoted by
' M(c,ä). Feasible solutions of this model have to
satisfy conditions (lf{3), while optimal solutions
are feasible solutions minimizing the function (4).

Let two feasible solutions be considered which
have the values F'r, F'rand F'i, F';, respectively. The
first solution is said to be dominated by the second
one if F'r7Fi and F'r>F'i.lt is strongly dominated
if the inequalities hold and one of them is strong. An
efficient solution can be defined as a feasible solution
which is not strongly dominated by any other
feasible solution. In othQr words, the feasible
solution associated with the values F'r, F', is efficient
if it follows for any other feasible solution that

Fi<F', implies I7, < F'i and

F\< ^F", implies F! < Fi.

The main task in multi-criterial optimization is to
find set EFF of all efficient solutions of a given

(s)

l t  :  l r -  r *  x r -  d , ( l )
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problem. In many cases it is preferable to character-
izn a subset EFF' of EFF which covers all possible
pairs of values of EFF, i.e. EFF' contains at reast
one efficient solution for each pair of values. The aim
of the'paper is to describe such subset for model
(lH5) and to illustrate how thoe solutions can be
found by a computer program.

Example: I-et T:3, c:5, h:2, dr:3, dz:2,
ds :  l '

The optimal solution (x,y) : {xr:3, xz:3,
x3:0,  ! r :0 ,  !z :1, . /s :0)  of  problem ( l [4)  wi th
Fr: 12and Fr: I is an efficient solution as it wili be
shown later on.

2. STABILITY AND MONOTONY
OF THE ONE-CRITERIAT
MODEL M(c ,  h )

The optimal solutions can be found using the
following recursive procedure (comp. Richter 1982):

Let

To : { t :  dr; 'O}, h(k, t)  :  O 
r=ä, 

(t-  k- l)d,

and
c(k, t) : c * h(k, I) for & < I and dr* r) 0.

Then

fo: :0,  f r : :  min { r (k ,  t )  +  f * :  t  <  t  -  l ,
(6)

k e T o - { l } }

^for al l  t} l  and te(To-{l}) w{T} can be used to
determine the minimal value Fr:fr for M(c, h).

I€t

f (k, t) : c(k, t)+fi,

and let the parameters ft(l) be introduced by

f,: f(k(r),r)
for all suitable r. Then an optimal solution can be
found using these parameters.
Algorithm: Input /c(r) for t e (To- { I }) ,./ { f }.
l -  t : : T .

2 . x 4 r y * 1 : :  i  d ,
r=t( r )+ I

r , t :0  fo r  r  -  k ( t ) *2 , . . . ,  t .

3 .  I f  k( t ) :0  s top,  e lse r : :  k( t ) ,  go to s tep 2.
O u t p u t  x 1 1 x 2 , . . . . ,  x T .

The components of the vectory can be determined
by formula (l). Since the paramerers /c(r) play the
most important role in solving the one-criterial
problem the collection

13 - {k(t)}*.rro-rru,,{r} (g)

is called generalized solution. The stability of model
(lH4) can be studied easily in rerms of generarizpd
solutidns.

Let K be a generalized solution and let the
following parameters be introduced :

(i) e(0)r : 0, c-(r): : ö(k(t))* I for all suitable r.
(ii) r(ft, t) : ("f (k, t)--Dl(a@@)- d(e)) for all

suitable k and t.
(iii) low : max max {r(/c, r):

t t
ö(k(t))< c-(/c)) and

up : rn,ro 
Tn 

{r(k, t): ö(k(t))> ö(k)1,

where low and up can be set minus or plus infinity,
respectively, if they are not defined.

The following stability region can be found for a
given generalized solution.
Theorem I (Richter 1984): K is a generalized
solution for all M(c', ä') with c,, h, >0 and

(c+low)/h{c'f h' ((c+ up)lh

and it is not a generalized solution for any other pair
(c', h')>0.

Let the example from section I be studied. We find
the generalized solution K: (0, 0, l) and the
optimal solution mentioned there. The calculations
are presented in Table l.

TABLE I

Solving the problem

f(k, t) r(k, t)

I

t :
5 9 t 3

t0  t2
l 4

5 9 t 2
0 0 t
l l 2

0
I
2

"t;
k(t)
d(t)
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Fig. l. Stability regions

Since the optimal solution can be also derived
from the generalized solution K: (0, l, l) the
stability region of the found optimal solution covers
that of (0, 0, l) and (0, l, l).

We shall provide here only one of the possible
monotony results for optimal solutions.
Theorem 3 (Richter 1986): Let two pairs of cost
inputs 0 < c' f h' < c" lh" be given and let (/ , y'.) and
(x', y") be the corresponding optimal solutions.
Then the following inequalities hold:

T T
( r ) ,ä f ,< ,Ly i

T T
(ii) _I. sien -{ > L sien {

t= I  r5l

A BASIC dialog program has been designed to
carry out a stability analysis for a given problern
M(c,ä). By investigating the neighbouring stability
regions one can find not only those regions for
generalized but also for optimal solutions of the
problerr (lHs).

We find low : - l, up : I and see that the
stability region is given by 2( c,/lr,_< 3.
Theorem 2 (Richter 1984): Let dt, dz d7 be a
fixed sequence of demand values. Then there is a
finite number of generalized solutions and as-
sociated stability regions defined by the inequalities
in Theorem I which cover R 2* .

One can see the four stability regions and
generalized solutions of dr:3, dz:2, dt:l in
Fig. l .

c'3 h'

( 0 .  t .  2 ) c '  =  2 h '

( 0 . 1 .  r )
Zh's c's3h'

0.0.1
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3. COMPLETE
CHARACTERIZATION OF EFF'

We consider the parametric model

M(ac, ah+ | - a) (9)

for 0(a{ l. Then the following statement is true.
Theorem 4 (Richter 1986): All generalized (and
therefore also optimal) solutions of the problem (9)
for 01a11 are efficient solutions for the model
(lHs). All other feasible solutions of (l[5) are
dominated by one of the found efficient solutions.

It follows from this theorem that the generalized
solutions provide an efficient solution, if the line

{c '  :  ac ,  h '  -  ah+  I  -a :  0<  a< l }

Fig. 2. Stability regions of the efficient sotutions

touches their stability region. orre.can see in Fig. 2
that only three generalized sorutions providr .m-
cient solutions for our example.

TABLE 2

R,esults of the dialog

No. of

s o l u t i o n l 2 3 4 5 D s m a n d

Ft zffi 3300 4t50 50fl) 6000
F2' t20 60 30 l0 0
lower bound .0ZB .034 .O2l .01 0
upper bound I .0?E .034 .OZt .01
r r
X2

x3

xa

f5

16

X7

xa

130 100 100 t00 100 t00
0 0 3 0 2 0 2 0 2 0
0 0 0 0 0 0
0 0 0 l 0 t o l 0

@ 4 . $ & 3 0 3 0
0 0 0 0 t 0 t 0
0 0 0 0 0 0
o m z o m m 2 0

c= l(XX)
h : 5

3ä'�s
( 0 . 0 .  0 )

c-'
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The BASIC dialog program is designed to use the
mentioned results in the following way. First, an
optimal solution is generated together with the lower
and üpper bounds for the parameter a. By choosing
other parameters a outside these bounds the decision
maker can try to find other efficient solutions which
fit better his conception on the relationship between
F, and Fr.

In Fig. 2theresults of the dialog with a problem of
eight periods are provided.
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