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Stability of the constant cost dynamic
lot size model

Knut RICHTER
Technische Hochschule Karl-Marx-Stadt, 9010 Karl-Marx-Stadt, PSF 964, G.D.R.

Abstracf A mathematical analysis of the dynamic lot size model with constant cost parameters is provided.
First, stability regions for so called generalized and optimal solutions are found, which show how the cost
input may vary, leaving the solution valid. Based on these results a Bnsrc dialog program has been
designed to display the optimal solution and the stability regions to the decision maker. Secondly, an
estimation of the initial optimal solution is given for the case, when the cost inputs leave the stability
region.
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1. Introduction

A mathematical analysis of the dynamic lot size
model with constant cost parameters is provided
in this paper. Stability regions for generalizsd ancl
optimal solutions are found, which show how cost
inputs may vary, leaving the solution valid. The
generalized solutions from Wagner-Whitin's al-
gorithm are used to generate an optimal solution,
and the corresponding stability region can be ap-
plied to estimate whether, with respect to the
inaccuracy of the cost inputs of the model, the
optimal solution wilt suit the decision maker's
individual idea of the robustness of a solution.

There is no one-to-one correspondence between
generalized and optimal solutions. Therefore, the
neighbouring stability regions, which may also
cover the optimal solution, have to be studied.
Based on these results a Besrc dialog program has
been designed to perform the calculations on the
G.D.R. A 5110 personal computer. The program
can be used to list all possible optimal solutions
for a given demand structure.

The dynamic lot size model is one of the best
known standard models in Operations Research,
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and it has been studied by several authors [1,3,6-9].
Generalizations of the model in multistage
processes and in multi-item systems have also
been investigated [4,5,9]. In all these models the
optimal solutions provide lot sizes which minimize
the sum of fixed costs and of holding costs. In
practice, however, one wzlnts to know more than
only an optimal solution. As in linear program-
ming [2], it is of great interest (i) to find sets of
inputs leaving an optimal solution valid and (ü) to
estimate the value of an optimal solution if the
inputs change very much.

Since the cost inputs in dynamic lot size models
are highly inaccurate, a stability analysis for these
inputs will be provided in the paper. Some for-
mulae will be given, which display the exact region
of the cost parameters for generalized solutions
generated by Wagner-Whitin's algorithm, and an
estimate of this solution for the case will be found
when the changing cost inputs do not belong to
the stability region. Before discussing the main
results and their application, the dynamic lot size
model will be formulated.

2. The dynamic lot size problem

Let c > 0 denote the set-up cost and let /r > 0
denote the per unit per period holding cost of
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some item. Then the production figures x,)-0
have to be chosen such that the given determinis-
tic demand d, ) 0 of this item is satisfied in all
periods t : t,2.. .. , T. If. the stock at the end of
the period r is denoted by y,, then the demand is
satis$ed if H is nonnegative. Usually the assump-
tion is made that the stock equals zero at the
beginning and at the end of the considered plan-
ning period, i.e. -/o : !r: 0. Then the problem of
minimizing the total costs can be expressed by the
following model:

c I  s ign x,*  hL y,*  min,
t : 1  t : 1

! , :  l t - t  *  x ,  -  dr ,  (2)

x r > -  0 ,  ! r t -  0 ,  t  : 1 ,  2 r . .  . ,  T ,  ( 3 )

!o :  f r :O-  (4 )

Let us consider a simple example to illustrate
the results which the paper tries to obtain. If
T : 3 ,  c : 5 ,  h : 2 ,  d t : 3 ,  d z : Z ,  d l : 1 ,  t h e n
model (1)-(4) is given by the subsequent relations:

5(sign x, * sign xz* sign x3) + Z( h* yz) - min,

I r :  x t  -  3 ,  I z :  l t  *  x2 -  2 ,  0  :  Y r *  x3  - ' L ,

X1.  X2,  x3,  ! t ,  !z) -  0 .

Then 11 :  xz:3,  xz:0,  l i  :  !s- -  0 ,  yz:  1  pro-
vides the unique optimal solution which can be
shown to be valid if the ratio c/h belongs to the
interval [1,3J. I t  c/h > 3 then x\:6,,  xz: x3:0,

l r :  3 ,  /z :7, ,  lE:  A and i f  c /h < 1,  then xt :  3 ,
xz: 2, x3: 7, lt : lz: !z: 0 are oPtimal solu-
tions, respectively. If, on the one hand, the deci-
sion maker is sure that the relation c/h of fixed
and holding costs will remain u'ithin this interval,
he can use the generated solution. On the other
hand, if this relation is changing essentially, it will
be of great interest to know, whether the ratio

costs of the initial optimal solution/costs of the

solution optimal with respect to the new costs
(5)

is significantly greater than one or not. It can be
shown that, if in the above example c/h becomes
greater than three, then this ratio is bounded by
c/3h, i.e. if, for instance, c: 5 and h:\ then
relation (5) will be bounded by 5/3.The decision
maker has to decide then whether the initial solu-
tion can be used or if he must turn to the current

optimal solution for ( c, h): (5, 1).

, Actually, there are also other reasons for in-
vestigating the stability of such solutions. The
algorithms developed for the extensions of
Wagner-Whitin's model (1)-(4) employ in some
cases the idea of deöomposition [4,5] and of
Pareto-optimality [6], and models of this type have
to be solved many time with slightly modified
inputs. Then, with the knowledge of the structure
of the stability regions, one might be able to speed
up those algorithms.

3. Generalized solutions of Wagner / Whitin's

model

Because of the positivity of the cost inputs, it

can be shown that d,: 0 implies x, : 0 for all t
and all optimal solutions. Then d, and d, canbe
assumed to be positive. Let d(k, /) denote the
demand for the per iods k + 1, . . . ,  / ,  i .e.

I

d ( k . r ) :  I  d , .
r : A +  1

Then ) ' r - r  >0 impl ies that  r , :0  and ! , - r :0
imp l ies  tha t  x ,  €  {  d ( t  -  1 ,  r ) ,  . . . ,  d ( t  -  1 ,  f  ) } .
This property has been proved by many authors
for at least one optimal solution. Here it holds for
all optimal solutions. Let the following symbols'

I

h ( k , t ) : h  I  Q - k - L ) d ,
r : k +  1

and

c ( k ,  I ) :  t  +  h ( k ,  l )

for k < / and do*, > 0 express the total costs over
the per iods /< + 1, .  .  . ,  /  i f  ! * :  ) )  :  0.

The set 4: { t: d, > 0} covers all periods with
positive demand. Then the minimal total costs /t
can be found by the following procedure
(Wagner/Whitin's algorithm) :

f o : 0 ,  f t : c ,  f o r r 2 2 a n d

r € ( r o - { t } ) u { r } ,  ( 6 )

, 4 : m i n {  c ( k ,  t ) + f o :  k <  t - r ,  k G  4 -  t 1 } } .

Procedure (6) applied to the example leads to

f o : 0 ,  f r : 5 ,

f r :  m i n { . ( 0 ,  2 )  +  f o ,  c ( l , 2 )  +  f r }
: m i n { 9 + 0 , 5 + 5 } : 9 ,

(1 )
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" f i  :  min{  c(0,  : )  *  fo ,c( r ,  l )  * .h ,  c(2.  z)  + f r }
: m i n { 1 3  +  0 , ' 7  + 5 ,  5  +  9 }  : I z ,

i.e. the minimal value equals 12.
- Let f (k, t): c(k,, t) + fr, and let the parame-

ters k(r) be introduced by

f , =  f  ( k ( t ) ,  t )  ( 7 )
. \

for suitable t. Then an optimal solution can be
found using these parameters.

Algorithm
1 .  t r : T .
2 .  x k ( , t * t , :  d ( k ( t ) ,  t ) ,  x k  , :  0

2 r . .  . ,  t .
3 .  l f  k ( t ) : 0  s t o p ,  e l s e  r , :  k ( t )
O u t p u t  x 1 t  x 2 , . . .  e  x 7 .

f o r  k :  k ( r )  +

and go to step 2.

The components of vector y can be found by
formula (2).

It can be easily seen that in the example k11;:
k(2) :0 and k(3) :1.  Then us ing these data the
algorithm can be started:

1 .  t : 3  : +  2 .  * r :  d ( 7 ,  3 ) : 3 ,  x ,  : 0 .
2 .  k ( 3 ) + 0  - " i  r : k ( 3 ) : 1  : = ä  2 .  x r : d ( 0 ,  1 )

- 3 .

3 .  k ( t ;  : 0 ,  s top .

The values y,  :0 ,  /z :1 and yr :O can be de-
termined by (2).

The parameters as well as the optimal solution
are usually not unique. The collection

x  :  t t  ( t ) ) , = , . ' _ { r } ) u { r }

will be called a generalized solution. It should be
noted that a generalized solution contains much
more information than an optimal solution. On
the one hand, it follows from formula (6) that K
can be used to determine optimal solutions for all
problems (1)-(4) with a number of periods f ' < f,
w h e r e  T ' e ( T o -  { 1 } ) u t f  } .

On the other hand, the optimal solution found
can be also derived from the generalized solution
{0, 1, 1}. Because of this property one can expect
that the stability region of a generalized solution
will be only a subset of the stability region of the
corresponding optimal solution.

The main result needed in the next section is
the following: Every generalized solution fulfils

the inequality

k ( t )  <  k ( r )  ( 8 )

for all suitable I < r.
It follows from this inequality that the parame-

ters k(r) found by (6) and (7) can be determined
by comparing only the values f (k, t) for k -

k( l ) ,  k( l )  + 1. . .  . .  r  -  1.  This technical  resul t  wi l l
help to establish the exact stability region.

4. Stabitity of generalized solutions

Let K be a generalized solution generated by
(6) and (7). For which cost inputs except (c, ä) is
K valid? In order to study this problem the
parameters .f, ' , -f 

'(k, I). c'(k, l), h'(k, /) etc. wil l
be introduced for cost inputs (c', h'; with the
same meaning &s f , ,  " f (k,  l ) ,  c(k,  l ) ,  h(k,  / )  for
( c ,  h ) .

The number of set-ups c(r) for all suitable r
will be found by the formulae

c ( 0 )  , :  g  a n d  c ( t ) , :  c ( k ( r ) )  +  t .  ( 9 )

For example. the values c(0) : 0. c(1) : c(2):
1 and c(3) : 2, i.e. if the three-period problem is
considered, then the production figures are twice
positive.

Using property (8), the subsequent assertion
can be proved easily.

Lemma l. Let K be a generalized solution. Then the
inequality

c ( / )  <  c ( r )

holds for all suitable I < r.

Now let the parameters

r ( k ,  r )  :  (  f ( t r ,  t )  -  f , ) l ( r ( t r ( t ) )  - " ( k ) )  ( 1 0 )

be introduced for al l  k < t  wi th c(  k( t ) )  + c(k)
a n d  k ,  t e ( T o -  { 1 } ) u  { r } .

In the example r(7, 2) : ( f (7, 2) - f)/(c(O) -
c ( 1 ) ) : ( 1 0 - 9 ) / ( 0  - 1 ) :  - 1  a n d  r ( 0 . 3 ) : 1  c a n
be found.

Then the general bounds

l o w :  m a x  m a x  {  r ( k .  r ) :  c (  k )  >  c ( k ( r ) ) } ,  a n d
r k

u p  :  m i n  n l n  {  r ( k ,  t ) :  c ( k )  . c ( k ( r ) ) }  ( 1 1 )
t k
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can be determined where low and up can be set
equal minus and plus infinity, if the values are not
defined. In the example the bounds are equal
l o w :  - 1  a n d u p : 1 .

Theoreur 1. Let h' : h and let c' > 0 be such
positiue number that c' e lc * low. c + up]. Then
the generalized solution is ualid for (c' , h') and
f: :f,+ c(t)(c'' - c) holds for all suitable t.

Proof. By induction. Since dr > 0. by assumption
k (77 :0 ,  c (1 )  :1 ,  f i  :  f r  *  c (1X c '  -  c )  and  k (1 )
is valid for all c' > 0 of the one-period problem.

Now let the general case t be studied under the
usual assumption of induction. If f 

'(k, t) <
-J(k( t ) .  t )  for  some k + k( r )  then f  |  +  c ' (k ,  t )  <

, '1,,r* c '(k(t),  t)  holds. I t  fol lou's from the as-
sumption of induction and from c'(k, t) :  c(k, t)
* (c'  -  c) that . f  (k, r) + (c(k) + 7l(c'  -  c) < f ,  +
(c (k ( t )  +  7 ) (c '  -  c ) .  I f  c (k ( t ) ) :  c (k ) ,  then  the
inequality reduces to f (k, t) < f,. which con-
tradicts the procedure (6). Let k < k(l). Then it
fol lou's from Lemma 1 that c(k(t))>-c(k) is
fulfilled. If this inequality is strict. then the above
relation can be rewritten as

( f  ( k .  t )  - f , ) / ( r ( k ( r ) )  -  c ( k ) )  <  c ' -  c

and there is a contradiction to the choice of c'. i.e.
c * up < c'. The other case, if k > k(t). can be
studied in the same way.

Thus k(r) is part of the generalized solution for
(c ' .  h '  )  and

l i  
:  f l t , t +  c ' ( k ( r ) ,  t )  :  f , +  ( . ( k ( r ) )  +  1 ) ( r '  -  r )

: . f , *  r ( r ) (  c ,  -  c ) .  ü

It follows from this statement that K: {0, 0, 1}
is the generalized solution for all pairs (c', h')
with h' :2 and c'  e [4,6].

The next theorem will show that the parameters
c * low and c * up do not depend on c but on K
being valid.

Theorem 2. Let the conditions of Theorem 7 be
fulfilled and let r'1k, t1, low' and up' be the
parameters (10) and (11) fo, (c' , h'). Then
r ' ( k ,  t ) :  r ( k ,  t )  -  c '  *  c  and

c - F u p : c ' * t 1 p ' ,  c *  l O w :  c ' +  l O w '

hold.

Proof. Using the result of Theorem I one can
easily see that

r ' ( k ,  t )  :  ( f  ( k ,  r )  -  f , +  ( r ( k )
-  c ( k ( r ) ) )  ( r '  - ' ) ) / ( c ( k ( t ) )  -  r ( k ) )

: r ( k , t ) - c ' * c .

The other relations follow immediatelv from the
above equality. tr

In order to show that [c * low, c + upJ provides
the exact stability region for the generalized solu-
tion, the subsequent statement is useful.

Theorem 3. Let K be the generalized solution for
( c , ,  h )  a n d  l e t  h ' : h b u t  c ' < c  * l o w  o r c ' >  c * u p .
Then K is not oalid fo, (c',, h').

Proof. Let K be valid and let c' < c * low. Then

f i : f ,+ r( t ) (c ' -  c)  for  a l l  r  as in Theorem 1.
Now le t  r (k ,  / ) :  low )  c ' -  c ,  i .e .

( f  ( r r ,  t )  -  f , ) lk&Q))  -  " ( r . ) )  '  ( r '  -  , )

and

f , +  ( c ( k ( r ) )  +  1 ) ( c ' -  c )

.  f  ( k ,  t )  +  ( r ( k )  +  t ) ( r ' -  r ) .

Thus f,'>.f '(k, t). Contradiction. The case c'> c
* up can be handled similarily. il

Now let the stability region of the generalized
solution, i.e. the set of all cost inputs for which
this solution is valid, be expressed more conveni-
ently.

Theorem 4. Let K be a generalized solution for the
inputs (c, h). Then it is ualid for all c', h'>0
satisfying

(c + low)/h < c'/h'< (c + up)/h

and only for those inputs.

Proof. If K is valid for some (c', h' ) then it is
valid for (c', h')/(h'/h):1c'h7h', /z) and it fol-
lows from Theorem 1 that c * low < c'h7h'( c +
up. On the other hand, let (c', h') satisfy the
mentioned inequality. Then (c'h7h', &) provides
inputs for which K is valid, i.e. K is valid for
(r', h';. The generalized solution is valid for only
these inputs since Theorem 3 holds. tr
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According to this theorem the stability region
of  {0,0,  1}  can be expressed by 2<c ' /h '<3.

Corollary. The stability region of a generalized solu-
tion is a conuex cone in R t*. If the demand uector
(d1, d2,...,dr) is giuen, then there l's a finite
number of stability regions couering R\.

I f ,  for instance, dt:3, dz:2, dt:  1 from the
example is considered, then the following stability
regions and associated generalized solutions can
be found:

( i )  0  < c /h <t  for  {0,  I ,2} ,
(ü )  1<c /h<2  fo r  {0 ,  1 ,  1 } ,

(ä i )  2  <c /h<3  fo r  {0 ,0 ,  1 } ,
(iv) 3 < c/h for {0, 0, 0}.
A Bnslc dialog program has been designed for

the A 5110 G.D.R. personal computer to perform
procedure (6), the algorithm and the stability anal-
ysis according to Theorem 4. By this program the
neighbouring stability regions can be also checked
as to they are covered by the determined optimal
solution or not. In the example the generalized
solution associated with the stability region (ii)
generates the same optimal solution as it was
found for c : 5 and h :2. There_fore the real
stability region of the optimal solution is given by
l a c / h < 3 .

5. Approximation of the optimal solution

If the cost inputs change within the stability
region of the optimal solution, no correction is
necessary and the solution can be used. ft is, of
course, of interest to know whether one can con-
tinue.to apply the known solution. This is the
case, if the initial optimal has a value which does
not differ essentially from that of the new optimal
solution which, however, may be unknown to the
decision maker. Although he is able to answer the
question quickly by applying the dialog program
one must ask for simpler formula in decision
making.

Therefore, let K be a generalized solution found
for the cost inputs (c, &). The problem is how one
can estimate the solution if the inputs change to
(c', h') and this pair does not belong to the stabil-
ity region. In order to study this problem, let f 

'

denote the minimal costs for (c', h') and let

f 
'(c, lr) denote the costs arising with respect to

(c', h') if K is used. The ratio f '(c, h)/f '  wil l

then tell if the previous solution is sufficiently
'good'.

Let two multipliers be introduced which use the
parameters low and up from the stability analysis
from Section 4.

m :  c ' h / ( h ' ( t  +  u p ) ) ,

n = h ' ( c + l o w ) / ( t ' h ) .

If low or up are not finite, then the corresponding
multiplier will be set equal to zero. Without proof
the following theorem will be stated:

Theorem 5. Let e: max(m, n). Then f 
'(r, 

ft) <
e f ' o r f  

' ( c ,  
h ) / f ' < e  h o l d s .

Let the same example be studied again. For
c  :  5  and h  :2  m :  c ' / (3h , )  and n  :2h ,  /c , .  I f
c ' / h '  > 3  t h e n  m > l  a n d  f , ( 5 , 2 ) / . f , 4 c , / ( 3 h , ) .
This bound shows that the value of the initial
solution is not greater than mf ', and considering
that f'(5, 2) : 2c' * h' and that f' : c, + 4h, one
can see that (2c '  *  h,) / (c,  *  4h,)  4 c, / (3h,)  for
c '  ) -  3h' .

L e t  c ' : 8  a n d  h '  : 2 .  T h e n  f  
, ( 5 , 2 ) / f  ,  : 9 / 8

1 e : m : 4/3, i.e. the bound is not sharp. Taking
into consideration that the value of e can be
greater than the real value of the ratio (5), the
decision maker has to decide if e is sufficientlv
small or not.
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