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1. The Stability Problem for the Dynamic Lot Size Model   
 
 
1.1. The Stability Research for the Dynamic Lot Size Model 
 

The dynamic lot size model [13] has been studied in several papers of the first author and 

other researchers [5-12] to answer the question for which cost inputs an optimal solutions 

remains valid. First, stability regions, i. e. sets of cost inputs for which a solution is optimal, 

were determined by using the dynamic programming solution process [6-10]. The size of the 

stability region can be regarded as a measure of the robustness of decisions and a high value is 

economically favorable. An efficient algorithm for the generation of such regions has been  

discussed in [5]. The regions found in [6-11], however, covered only subsets of the stability 

region. Later a complete analytic expression for the stability regions has been found in [3,11] 

by the application of the properties of the minimal inventory cost from [2]. In [11] first 

attempts have been also made to analyse the behavior of the stability region for growing time 

horizons t, in other words, for growing planning intervals covering the periods 1,2,...,t. In this 

paper the analysis will be continued and several results from [11] will be generalized. 

 

This analysis is motivated by the following observation: Planning and forecast horizons [1] 

provide an optimal time horizon in dynamic lot size models because the optimal decision for 

the planning horizon is part of a long run optimal decision. The cost parameters used in the 

models are certainly approximate and their final values might be different. If the final values 

belong to the stability region this difference will not affect the optimality of decisions. A large 

size of the stability region is therefore obviously favorable. The planning horizon as the best 

time horizon for a model has, however, not necessarily the largest stability region as it will be 

shown later. With this respect other periods might serve better as time horizons.  Hence, the 

determination of the time horizon can be regarded as a problem with the two criteria 

"optimality" and "stability", and it is worth checking the behavior of the stability regions.  

  

Since with growing time horizons of a model optimal decisions depend on an increasing num-

ber of inputs the stability regions should certainly shrink. Let the notation S(m,n) be used for 

stability regions of an optimal solution for the periods m,m+1,...,n. Then the relations   

 

 S(m,n) ⊂ S(r,t) 1),   S(m,n) ⊂ S(m,r-1) ∩ S(r,n)     or  S(m,n) = S(m,r-1) ∩ S(r,n)     

 

for  1 ≤ m ≤ r ≤ t ≤ n  are expected to hold. The stability region of an optimal solution for the 

periods m,m+1,...,n is then a subset of the regions for solutions which are optimal for 

m,m+1,...,r-1 and for r,r+1,...,n , respectively.     In an extreme case it might coincide with the  
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1) The inclusion symbol covers in this paper the case of identical sets 

intersection of regions. Then the tightest bounds of the regions for these two subproblems  

determine the bounds of the stability region for the original problem. Such pairs   

of sets  S(m,n) and  S(r,t) are called  monotonous   and the triples S(m,n),  S(m,r-1),  S(r,n)  

will be called monotonous and strictly monotonous, respectively. The paper will aim at sear-

ching such (strictly) monotonous pairs and triples.  

 

It has been found (comp. [11]) that generally with an increasing time horizon the stability 

regions might not shrink and monotonous pairs will not exist. The sufficient conditions for the 

identification of monotonous and strictly monotonous pairs and triples from [11] require the 

existence of ordinary planning horizons. 

  

In this paper some more efforts are made to analyse this sequential behavior of the stability 

regions. First, the regions are also shown to be shrinking if  so-called planning and forecast 

horizons exist and the time horizon of the initial problem exceeds the forecast horizon. 

Secondly, the conditions for the identification of (strictly) monotonous triples are also ge-

neralized to the case of planning and forecast horizons. Thirdly, the existence of strictly 

monotonous triples is proved for the case that a certain stability set of the ordinary planning 

horizon is sufficiently large. Hence, monotonous and strictly monotonous triples can be found 

under more general conditions than in [11], new interpretations of the sufficient conditions are 

presented and  some more counterexamples illustrate  the conditions used in the assertions. 

 

 

1.2. The Model and its Solution 

 

The one-product dynamic lot size model covering a planning interval with periods 1,2,...,n, 

where n is also called time horizon of the model, consists in determining order variables xt 

and inventory variables yt for one product and all periods t=1,2,...,n. When ordering a nonzero 

amount the setup cost s appears. Storing one item for one period costs h units. Under the as-

sumptions that end period inventory is regarded, the demand dt > 0 of every period is to be 

satisfied, the stock of that product is zero before and after the planning interval, and planning 

interval cost is to be minimized, many authors gave the following model: 

 
Nonnegativity of the variables: xt ≥ 0, yt ≥ 0, t=1,2,...,n.    (1) 
 
Zero stock before and after the planning interval: yo =  yn = 0.    (2) 
 
Demand satisfaction: yt =  yt-1 + xt - dt, t=1,2,...,n.     (3) 
 
       n 
Cost minimization: ∑ (s sign xt + h yt)  → min.      (4) 
   t=1 
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The model will be denoted by M  and if the first and last period are significant by  M(m,n) 

with the first period m and the last period n ≥ m.  

In this paper the techniques used to determine an optimal solution for the model (1) - (4) do 

not play the major role. It will be assumed that optimal solutions can be found by dynamic 

programmming procedures based on the recursion of the type  

 

 ft =  ci(t)t + fi(t)-1 = min { cit + fi-1: 1 ≤ i ≤ t}, fo = 0,    (5) 

 

with  ft  as minimal cost for the first t periods and cit as sum of the setup cost at period i and 

of the holding cost for the periods i,i+1,...,t. The periods i(t) which cover the last setup for 

every time horizon  t are called regenerations points and the relation i(t) ≤ i(t+1) has been pro-

ved by many authors. If i(t) is not unique the largest value will be used.  Because of this rule 

always exactly one optimal solution will be generated, although there may exist more than one 

optimal solution. The recursion (5) and the properties of regeneration points are discusseded 

in many standard textbooks of Operations Research and Production Planning (comp. [5]). In 

the last years more efficient algorithms for the dynamic lot size model have been developed 

(comp. [12]).  

 

The case of i(r)=r is of special interest, since it splits the problem M(1,n) into two 

independent subproblems M(1,r-1) and M(r,n), if n ≥ r. The period r-1 is called (ordinary) 

planning horizon  in the lot size literature, since the next period r will be always a setup 

period, no matter which time horizon n ≥ r is regarded. More generally, a period  r-1 is called 

planning horizon for the forecast horizon t,  if  r is setup period in every optimal solution for 

all models with a time horizon n ≥ t (comp. [1]).  

 

Since a feasible solution is uniquely determined by the order values  xt  the symbol x will be 

used to denote feasible or optimal solutions. If the starting and end periods are significant, the 

notation x(m,n) will denote optimal solutions for  M(m,n). A solution is also characterized by 

the periods in which the goods are ordered. These periods are called setup periods. 

 
1.3. Stability Regions 
 

If an optimal solution x is found, it is of interest to know for which parameters s and  h it will 

remain valid. Such a set will be called stability region. Since the cost inputs can be 

normalized by dividing both parameters by the value h only the stability region S  for the setup 

cost input is to be discussed in this and the next sections. 

 

One approach to determine the set S consists in the following idea (comp. [2]): Let solutions 

with a fixed number of setups k be introduced and let H(n,k) be the minimal inventory cost for 
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the case h=1  in a model with n periods and  k setups. How such values can be found is at the 

moment of no interest. The problem of determining an optimal solution is then also provided 

by 

 

 sk + H(n,k) → min,         (6) 

 1 ≤ k ≤ n.          (7) 

 

The optimal number k(s), which may be not unique for a problem, provides the number of set-

ups of an optimal solution. Set S is characterized in the next theorem. 

 

Theorem 1 ([3, 11]): The (setup cost) stability region of an optimal solution for the dynamic 

lot size model is provided by the following interval 

  

 s ∈S ⇔ s- = H(n,k(s)) - H(n,k(s)+1) ≤ s ≤ s+ = H(n,k(s)-1) - H(n,k(s)),  (8) 

 

where one of the bounds might not exist.  

 

The relation (8) provides a typical marginal property: The setup cost input can vary within the 

range of the differences in the minimal inventory cost occuring if the number of setups is 

changed by one.  

 

Example 1: Let n=3, d = (3,2,1),  s=2.5  and h=1. The optimal  solution for this problem is  

x =  (3, 3, 0) and k(2.5) = 2, H(3,2) = 1. Then H(3,1) = 4, since one setup only implies the de-

mand of the periods 2 and 3 to be ordered at the first period, and H(3,3) = 0. It follows then 

that S(1,3) is provided by 

 

 s- = 1 = 1-0 ≤ s  ≤ 4-1 = s+ =  3   ⇒  S(1,3) = [1,3].  

 

The stability region can also be found explicitly: For the optimal solution the total cost should 

satisfy 

 

 2s + 1 ≤ 3s,  2s + 1  ≤ s + 4,  2s + 1 ≤ 2s + 2   ⇒  1 ≤ s ≤ 3. 

   

As a consequence of the relation (8) R+  can be covered by a finite number of stability regions 

which correspond to certain optimal solutions. Tab. 1 illustrates this property for example 1. 

 

 Tab. 1 about here 
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Remark: The model introduced in section 1.2. is given for positive demand. The same 

stability results can also be obtained for nonnegative demand values. Then, however, either 

the recursion (5) and the minimal inventory cost H(n,k) have to be redefined, or zero demand 

values have to be replaced by sufficiently small ε. Details of such a solution approach will not 

be discussed here. 

 

Let two other examples be considered: 

 

Example 2: Let n=6, d = (3,2,1,2,2,3) and s=2.5. Then the optimal solution is x = 

(3,3,0,4,0,3)  and  S(1,6) = [2,3]. 

 

Example 3: Let n=3, d = (2,2,3) and s=2.5, i. e. the last three periods of the example 2 are re-

garded. Then the optimal solution is x = (4,0,3) and  S(4,6) = [2,6]. 

 

It follows from the previous examples that  S(1,3) ∩ S(4,6) = [1,3] ∩ [2,6] = [2,3] =  S(1,6) 

holds. Whether such a relation is true in general will be the point of the next section. 

 

 

2. Sequential Stability 
 

2.1. More Definitions and Examples 

 

When the time horizon is growing a series of stability regions and appropriate optimal soluti-

ons arises. As it was pointed out in section 1.1.  a pair of stability regions S(r,t), S(m,n) of op-

timal solutions for dynamic lot size models M(r,t) and M(m,n), m ≤ r ≤  t ≤ n  is called 

monotonous if the subsequent region is a subset of the previous set. A triple of  stability 

regions associated with the periods  m ≤ r  ≤ n  is called monotonous  if      

 

 S(m,n) ⊂ S(m,r-1) ∩ S(r,n)   

 

holds and strictly monotonous  if   

 

 S(m,n) =  S(m,r-1) ∩ S(r,n)    

 

is fulfilled. If there is a strictly monotonous triple the stability region S(m,n) coincides with the 

intersection of regions for two subsequent subproblems  M(m,r-1)  and M(r,n)  and is determi-

ned by the tightest bounds of the two regions. A pair of optimal solutions x(m,n), x(r,t) with m 

≤ r ≤ t ≤ n  is called monotonous if the order and inventory values of the solutions coincide for 
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the common periods. For this case the notation x(r,t) ⊂ x(m,n) will be used. It is obvious that 

for monotonous pairs of solutions  the periods m, r  and t+1, if t < n,  are setup periods. 

Lemma 1: Let the dynamic lot size model M(m,n) be considered and let the period r-1 be a 

planning horizon for the forecast horizon t. Then x(m,r-1) ⊂ x(m,n)  and  x(r,n) ⊂ x(m,n)  hold 

for all n ≥ t. 

 

Proof: According to the definition the period r is a setup period for all models M(m,n). Then 

the parts of the solution x(m,n) covering the periods m,m+1,...,r-1 and r,r+1,...,n must be op-

timal for the subproblems M(m,r-1) and M(r,n), respectively. � 

 

Two more examples illustrate the various situations occuring for the stability regions and opti-

mal solutions. 

 

Example 4: Let d = (17,9,12,10,9,7,9,5) and s=20. Then the stability regions S(1,t) for 

t=1,2,...,8  are as provided in Tab. 2 and in Fig. 1: The horizontal and vertical axes of the figu-

res cover the growing number of periods and the setup cost values s, respectively. The appro-

priate stability regions are represented by vertical lines. The lower and upper bounds of these 

lines are also connected to explain which variations of the regions around the initial cost input 

s=20 can be observed. The appropriate optimal solutions are shown in Tab. 2. 

 

 Tab. 2 and Fig. 1 about here 

 

Remark: It can be seen that the nonmonotonous changes of the regions are accompanied by 

solutions which revise previously planned values and are nonmonotonous as well. However, 

the stability regions and optimal solutions for the periods 6  and 8  form  monotonous pairs.  

 

Below the sequential stability regions are analysed  under the presence of the planning and fo-

recast horizons. The reason for such assumption is not only mathematically based but also em-

pirically clear: It guarantees also monotonous pairs of optimal solutions; and the monotonicity 

for stability regions certainly makes only sense for such pairs of solutions.  

 

Example 5: d = (3,3,...) and s = 10. It can be seen that even stationary demand will not 

guarantee the monotonicity of optimal solutions and stability regions (compare Fig. 2   and 

Tab. 3). 

 

 Fig. 2 and Tab. 3 about here 

 

The optimal solutions, the minimal costs divided by the number of periods, and the stability 

regions are contained in Tab. 3.  Fig. 2 shows again the variation of the stability regions 
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around the cost input s=10. Additionally, the values of the per-period minimal cost ft/t are 

represented by a broken line . The relation between  S(1,t) and ft /t will be discussed in section 

2.4. 

2.2. Monotonous Pairs and Triples of Stability Regions 

 

Lemma 2:  Let M(m,n) be considered, let r-1 be a planning horizon for the forecast horizon  t, 

and  let n ≥ t. Then 

 

  S(m,n) ⊂ S(m,r-1) and S(m,n) ⊂ S(r,n)       (9) 

 

hold for all n ≥ t, i. e.  monotonous pairs of stability regions exist. 

 

Proof: Let s' ∈ S(m,n). The optimal solution x(m,n) is the same as that for the initial parameter 

s. According to lemma 1 x(m,r-1) and x(r,n) belong to x(m,n)    and are therefore optimal for  

M(m,r-1) and M(r,n) with the setup cost input s', respectively. � 

 

Monotonicity results may also be obtained if no explicit planning and forecast horizons are gi-

ven. Let  T  denote the set of setup periods of an optimal solution for the problem M(1,n). 

 

Lemma 3:  The inclusions  x(1,i-1) ⊂ x(1,j-1)  and  S(1,j-1) ⊂ S(1,i-1)  hold for all  i, j  ∈ T,  

 1 < i < j ≤ n. 

 

Proof:  The optimal solutions fulfill obviously x(1,i-1) ⊂ x(1,j-1)  if i > 1. If the second 

solution is optimal for s' ∈ S(1,j-1)  then this is also true for the first solution, i. e.  

s' ∈ S(1,i-1).  � 

 

For illustration example 2 can be used:  

The optimal solution is x = (3,3,0,4,0,3)  with T = {1,2,4,6}.  Then x(1,1) = (3) ⊂ 

x(1,3) = (3,3,0) ⊂ x(1,5) = (3,3,0,4,0)  and   S(1,1) = [0,+∞) ⊃ S(1,3)  =  [1,3]  ⊃ S(1,5) =  

[2,3],   but  S(1,2)  = [2,+∞). 

 

Under the same conditions as in lemma 2 the existence of monotonous triples can be proved. 

 

Theorem 2:  (i) Let M(1,n) be considered and r-1  be a planning horizon for the forecast hori-

zon  t and  n  ≥ t  ≥ r. Then  S(1,n) ⊂ S(1,r-1) ∩ S(r,n)      (10)  

holds. (ii) Let additionally  r = t or let the period t-1  be an ordinary planning horizon for 

M(1,n).  Then     S(1,t)  ∩ S(r,n) ⊂ S(1,n)          (11) 

holds.  (iii) Let the conditions from (i) and (ii) be fulfilled and  

let furthermore      S(1,t) ⊃ S(1,r-1)         (12) 
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be true. Then     S(1,n) = S(1,r-1) ∩ S(r,n)        (13) 

holds. 

 

Proof:  The relation (10) is a consequence of lemma 2. 

Let the inclusion (11) be studied:  The case r = t  has been proved in [10]. Let  t > r :  The pe-

riod t-1 itself is an ordinary planning horizon. For this case the relation  

S(1,t) ∩ S(t,n) ⊂ S(1,n) has been proved in [11] as well.  Let the problem M(r,n) be conside-

red. Since  r  is setup period for the problem M(1,n) the property of the period t-1  to be ordi-

nary planning horizon does not depend on the periods before r. Hence the period t-1  is also 

ordinary planning horizon for M(r,n). Then lemma 2 can be applied and  S(r,n) ⊂ S(t,n) holds, 

i. e.  S(1,t) ∩ S(r,n)  ⊂ S(1,t) ∩ S(t,n)  ⊂  S(1,n)  is true. 

The relations (10) - (12) yield immediately the identity (13). � 

 

Remarks: (i) If r-1 is an ordinary planning horizon, then theorem 2 coincides with the results 

presented in [11].  

(ii) It can be seen that monotonous pairs and triples appear together and one of the notions 

seems to be redundant under the conditions of the theorem. However, the monotonicity of 

pairs of stability regions shows the model to become less robust with increasing time horizon, 

while  (strictly) monotonous triples represent a more regular type of monotonicity. 

(iii) If t-1 is not an ordinary planning horizon the relation (11) might not hold. Let n = 6 in the 

example 5. Then r-1=3 is a planning horizon for the forecast horizon t=5. The     period t-1=4 

is obviously not an ordinary planning horizon and  

S(1,5) ∩ S(4,6) = [6,18] ∩ [6,+∞) ⊄ [9,27] = S(1,6). 

(iv) Unfortunately, the inclusion (12) which guarantees strictly monotonous triples will not 

hold in general. Sufficient conditions for (12) will be discussed in the next section. 

(v) The relations (10) and (11) may all be distinct as the next example will display. 

 

Example 6: Let d = (7, 1, 18, 6, 1, 2), s = 5. Then the optimal solutions x(1,3) = (8,0,18), 

x(1,4) = (8,0,18,6)  and  x(1,6) = (8, 0, 18, 9, 0 , 0) are found and  i(1) = i(2) = 1, i(3) = 3, i(4) 

= i(5) = i(6) = 4.  Then period r-1 = 3 is an ordinary planning horizon and the case r = t of 

the theorem occurs. However, the stability regions S(4,6) = [4,+∞), S(1,3) = [1,36], S(1,4) = 

[1,6]  and S(1,6) = [4,9] are quite different and the inclusions (10) and (11) are really not 

identities: [4,6] ⊂ [4,9] ⊂ [4,36]. 

 

2.3. Sufficient Conditions for Strictly Monotonous Triples 

 

Now, it will be discussed in which cases the inclusion (12) securing the existence of strictly 

monotonous triples is valid. Here, only the case of r = t  , i. e. the case of ordinary planning 

horizons is regarded. 
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First, let  an ordinary planning  horizon t-1  for a model M(1,t) be considered and let  Jt  

denote the set of all setup cost inputs for which the appropriate optimal solutions have the 

planning horizon t-1. This set can be characterized by the following lemma. 

 

Lemma 4: Let s+ be the largest upper bound of all the stability regions of those optimal solu-

tions for M(1,t) which satisfy  the relation i(t) = t.      (14) 

Then Jt  = [0,s+]      holds.         (15) 

 

Proof: When moving from one stability region to the next and increasing s it can be found that 

the number of setups k(s)  of the corresponding optimal solution will not increase (compare 

[4]), i.e.   k(s) ≥ k(s'),    holds if  s < s'. 

The last setup period i(t) from recursion (5) is also depending on s and k and it will not 

increase with growing s or falling k (compare [2]). As a consequence, if the notation i(t,s) is 

used, the relation  i(t,s) ≥ i(t,s'),  if   0 ≤ s < s'       (16) 

holds. Then (16) immediately yields the formula (15). � 

 

This set is J3 = [0,1] in the example 1 (comp. Tab. 1). Let M(1,3) in example 6 be considered. 

The solutions (7,1,18)  and  (8,0,18) guarantee i(3) = 3. The stability regions for both the so-

lutions are [0, 1]  and  [1,36], respectively. Then J3 = [0,36]  = [0, 1] ∪ [1,36]. 

 

Lemma 5: The following statements are equivalent: 

 S(1,t-1) =  S(1,t)   ∧ S(1,t) ⊂  Jt       (17) 

  S(1,t-1) ⊂ Jt.          (18) 

 

Proof:      (18)  ⇒  (17):   Let   x(1,t) be the optimal solution for M(1,t) with the initial cost  

parameter s ∈ S(1,t-1). The period  t-1 is an ordinary planning horizon. 

According to lemma 2 the inclusion  S(1,t) ⊂ S(1,t-1) holds.    

Let now s' ∈ S(1,t-1) ⊂ Jt.  It has to be shown that  s' ∈ S(1,t) holds.  It is clear that t-1 is a 

planning horizon for s', too. Therefore an optimal solution for M(1,t) with the parameter s' 

will have a setup in the period t. Then an optimal solution x(1,t) for M(1,t) with s' is 

determined by the optimal solution x(1,t-1) and by adding one setup to x(1,t-1). Hence, s' ∈ 

S(1,t).  

The other direction of the proof is quite obvious. �  

 

Hence, the condition S(1,t) ⊃ S(1,t-1)  securing the relation (13) for in theorem 2 is fulfilled if 

and only if  the cost inputs from S(1,t-1) provide an optimal solution of   M(1,t) with i(t) = t. 

In other words, monotonous triples occur if the stability set Jt of the planning horizon t  is suf-

ficiently large and contains the set S(1,t-1). 
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Let the example 6 be analysed once more: The set S(1,3)= [1,36] is not a subset of J4 = [0,6] .  

Thus the property (18) cannot be guaranteed. 

 

Unfortunately, the condition (18) (or (12)) is not necessary for relation (13).  

 

Example 7: Let s = 5  and d = (4, 2, 5, 3, 4). Then S(1,2) = [2,+∞),  S(1,3) = [2,10],  S(1,5)= 

=  S(3,5) = [3,8]  and r=t=3 and j=5. For this example the relation (13) holds, 

i. e.  S(1,3) ∩ S(3,5) = S(1,5) , although the properties (12) and (18) are not  satisfied:  

S(1,2) ⊄ S(1,3)   and   S(1,2) ⊄ J3 = [0,12]. 

 

2.4. The Size of the Stability Regions and the Time Horizon 

 

Let the example 5, Tab. 3 and Fig. 2 be considered once more. The periods r-1 = 3m are 

planning horizons for the forecast horizons t = 3m+2, m=1,2,... . The average (per-period) 

minimal cost occuring with the use of the time horizon r-1 is (10 + 3 + 6)m/3m = 6.33... . 

This value is minimal for the given problem. If the time horizon to be used in the lot size 

problem can be r-1=3, then this horizon is accompanied by the stability region S(1,3) = [6,+∞
), which is probably large enough. If, however, planning procedures do not allow such a small 

time horizon, the next optimal time horizon is r-1 = 6 with the stability region S(1,6) = 

[9,27]. Then, perhaps the time horizon 5 will be prefered with higher average minimal cost 

6.4 but with a better stability region S(1,5) = [6,18]. This region might be prefered since it 

leaves more space for equiliteral setup cost variations.  
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Conclusions 
 

With growing time horizon stability regions of the dynamic lot size problem will  behave 

quite different. Monotonous pairs and triples of stability regions and monotonous pairs of 

optimal solutions can be identified if planning and forecast horizons exist. Strictly 

monotonous triples appear if the ordinary planning horizon has a sufficiently large stability 

set. Concerning the practical application of the dynamic lot size model the analysis makes 

clear that the robustness of optimal solutions depends on the demand pattern.  In many cases a 

larger time horizon will reduce this robustness and  sometimes this robustness is as small as in 

the worst subintervals of the time horizon. However, nonmonotonous behavior of the stability 

regions can also be observed.  

The size of the stability region can serve as one of the criteria for the determination of the time 

horizon of the dynamic lot size problem. It can happen that an economically preferable time 

horizon generates a rather unstable solution. Then it is perhaps worth considering other time 

horizons with a more preferable stability region. 
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Tables 

 

Stability region [0,1] [1,3] [3,+ ∞) 

optimal solution (3,2,1) (3,3,0) (6,0,0) 

k(s) 3 2 1 

H(s) 0 1 4 

i(3) 3 2 1 

 

Tab. 1: Stability regions and other relevant information 

 

 

t 1 2 3 4 5 6 7 8 S(1,t) 

x(1,2) 26 0       [9,+∞) 

x(1,3) 26 0 12      [9,24] 

x(1,4) 26 0 22 0     [10,44] 

x(1,5) 26 0 31 0 0    [19,62] 

x(1,6) 26 0 22 0 16 0   [10,30] 

x(1,7) 26 0 22 0 25 0 0  [18,39] 

x(1,8) 26 0 22 0 16 0 14 0 [10,25] 

 

Tab. 2: Optimal solutions associated with the growing time horizon 

 

 

t 1 2 3 4 5 6 7 8 9 ft/t S(1,t) 

x(1,2) 6 0        13/2=6.5 [3,∞) 

x(1,3) 9 0 0       19/3=6.33 [6,∞) 

x(1,4) 6 0 6 0      26/4=6.4 [3,12] 

x(1,5) 9 0 0 6 0     32/5=6.4 [6,18] 

x(1,6) 9 0 0 9 0 0    38/6=6.33 [9,27] 

x(1,7) 9 0 0 6 0 6 0   45/7=6.43 [6,12] 

x(1,8) 9 0 0 9 0 0 6 0  51/8=6.38 [9,25] 

x(1,9) 9 0 0 9 0 0 9 0 0 57/9=6.33 [9,21] 

 

Tab. 3: Optimal solutions, minimal costs and stability regions for example 5 
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Fig. 1: Stability regions S(1,t) for example 4 
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Fig. 2: Stability regions S(1,t) and average minimal cost  ft/t  for example 5 

 

 


