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A Parametrie Analysis
of the Dynamie Lot-sizing Problem?)

By Knut Richter and Jozsef Voros

Abstract: This paper gives the analysis of the parametrized dynamic lot-size model. Three
cases of parametrization are studied here: (i) setup and holding costs, (ii) demand vector,
(iii) costs and demand. For all these cases the stability region of the parameters is found,
Le. it is shown for which parameters a solution generated by Wagner-Whitin’s algorithm
remains valid. In the parametric analysis of the cases (i) and (ii) the parameter intervals
are found by studying a simple system of inequalities. In the more complicated case (iii) the
stability region of the two parameters is drawn by a computer program.

1. Introduction

In the dynamic lot-sizing problem (DLSP) the demand for the finished product
occurs periodically and is known for 7' time periods in advance. Our models rely upon
the assumption of linear inventory holding costs rather than the more general concave
holding costs and holding costs remain constant in all time periods.

The DLSP is one of the best known standard model in OR/MS and the basic model
of DLSP has been developed into many directions. Although the dynamic pro-
gramming algorithm given by Wagner and Whitin (1958) for solving the uncapacitated
DLSP can be considered as an effective one, heuristics are also studied frequently
([9]. [6], [3D-

The theory of the multilevel lot-sizing problems is a useful generalization of the
single-level DLSP, too ([5], [11], Love (1972), [4], [2], [1]) and relatively less effort
has been devoted to the parametrical problems ([7], [8]).

The purpose of this paper is the investigation of the stability of an optimal schedule.
Section 2 gives the parametric analysis of the objective function, while Section 3 gives
that of the demand vector. Section 4 describes the two-parametric case.

2. Parametric analysis of the objective funetion

The DLSP is studied as

T
2 (s-sign(x;) + k- y;) — min; (1)
t=1
yt—1+xtzyt+dt7 t:132:"':T’ (2)
xtgo; yt;oz t:1:2)-'-;T; (3)
Yo=yr=0. (4)
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The inputs of DLSP are as usual:

T time horizon,

s = setup cost,

k= holding cost,

y, = the inventory level at the end of period ¢,
x, = the production level at period ¢,

d. > 0 demand at period ¢.

In problem (1)—(4) total setup and holding cost is minimized subject to the satis-
faction of the demand at each period.
The Wagner-Whitin algorithm is used to solve DLSP. Introducing

t

clk,t)y=s+h- Z r—%k—1)-dy; t=12,..,T;
e k=20,1,.., t—1,
the following recursion is performed for all ¢:
f(0) =0, f(t) = min{c(k,t) + flk):k<t}, t=1,2,...,T. (5)
Let f(k, t) = c(k, t) + f(k). The parameters {k(f)}, t = 1 2, ..., T satisfying
f(ty = f(k(t), 1) ,

called regeneration points, can be used to find an optimal solution for DLSP.

In [7] it is pointed out that the stability region of such {k(t)}, i.e. the set of all cost
inputs (s, k) having a {k(t)}-solution, constitutes a convex cone with a given form.
Now, however, the following cost structure is considered :

(3, k) = ((s, h) + a5, k) .

Let DLSP be solved for (s, k) with a given demand series and let {k({)} be a cor-

responding regeneration set.
Let s(0)=A(0) = 0,

t
M) = hlk) + % (r—k—1)-d, |
r=~k+1
s(k,t) = s(k) +1, and b (6)
h(t) = h(k(t), ) ,
s(t) = s(k(t), 1) ,
furthermore ds(k, t) = s(k, t) — s(t) and dh(k, t) = h(k, t) — h(t)fort =1,2, ..., T;
E=0,1,..,t —1.
It is the easy to find the set 4 of a’s for which {k(t)} remains valid.
Theorem 1. The set A is given by the tnequalities
uwlk, ) <a<ok,t); t=1,2,...,T, k=01, ..,t—1
s+as >0; h+ah >0 (7)
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where u(k, t) equals to
—(s- ds(k, t) + h - dh(k, £)) /(S - ds(k, t) + & - dh(k, 1)) (8)
if the denominator of (8) is positive, otherwise it s negative infinite. v(k, t) also equals to

(8), if the denominator 1s negative, otherwise it is positive infinite.

Proof. It is enough to show the necessity of the conditions.
For costs (5, h) must be true that

fle,ty=ft); t=1,2,...,T; k=0,1,...,t—1 (9)

where for cost inputs (3, ) f(f) means the minimum cost of covering demands in the

t-period problem while f(k, t) means the same with the proviso that the last but one
regeneration points is k. Using definitions in (6), if (s, 2) has the same regeneration set
{k(t)}. then (9) can be written as

f(k, t)

I

(s + aB) - s(k, t) -~ (b + ah) - h(k, 1)
= (s + a8) - s(t) + (b -+ ah) - h(t)
= fit),
and thus the conditions
s+ ds(k, 1) + b+ dh(k, t) = —a(5 « ds(k, t) + h = dh(k, t))

follow and conditions (7) have the same meaning. ]

3. Parametrie analysis of the demand veetor

Let the demand vector d” = (d;, ci;, cee s JT) be expressed as
d,=d, +b-d; t=12, ..,T;

and let the DLSP be solved for (s, 2) and d,, t = 1,2, ... , T.
To answer the question that for which b is {k(¢)} valid we introduce the following
expressions:

h(0) = 0;
A - ' =
R = ‘ r=~k-+1 (10)

dh(k, t) = h(k, t) — h(t);
t=1,2,...,7; k=0,1,...,t—1.

Let ﬂtj) be the ~minjmum cost of covering demands d with costs (s. k) in the t-period
problem while f(k, t) be the same with the proviso that k is a last but one regeneration
point.
Theorem 2.
(i) The set B of parameters b for which DLSP is solved by {k(t)} is given by the
following inequalities:
wk,t)y < b-h < 2(k, t)
di +— bd, = 0; t

t=1,2,...,T. Ek=0,1,..,t—1;

w e

(11)
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(ii) The equations

~

f@&) =ft) - b-h-h); Pe= 03205 T (12)
hold for all feasible b, where w(k, t) equals to
~(fk, 1) — f()) 1dh(E, 1 (13)

if the denominator is positive, otherwise it is negative infinite. z(k, t) also equal to (13)
if dh(k, t) s negative otherwise it is positive infinite.

Proof. The statements are obviously true for a one-period DLSP. Since in the
Wagner-Whitin algorithm the solution for a ¢-period problem is found with the help
of the k-period problems, £ < t. it is necessary to show how to derive the statement
for the t-period case if the k-period case, k < t. is assumed to have been already
proved. Let the ¢-period case be proved indirectly.

We assume that for feasible b there is some £ such that

iy = fik. ty < F(k(e). 1) - (14)
We remind that {%(¢)} is determined for the cased,, t = 1,2, ..., 7.
It follows from (14) that

~ ~

t
fk)y +-s+h- ¥ (r —k—1)-d,
r=~Lk=-1

- t ~
< flk(t) +s+h- T (r—k—1)-d,.
r=k-=-1
Assuming that (12) is true for ¥ < t and applying the definitions in (10) we can write:

Sk, 8) 4+ R bh(k, t) < fit) + k- b - h(t)
.ty —fty << kh-b-h(k.t).

In any case there is a contradiction either to the optimality of {k(¢)} for d,, t =

or

=1,2,..., T, or to the definition of set B given in the formulation of the theorem.
The statement (ii) is an obvious consequence of statement (i);
5 2 t ~
ft) =

I

fk) ~s~h- X (r—k—1)-d,
)

fity +~h-b-ht). O

4. Two-parametric analysis
Our task in this section is to determine the set 4 B of (a, b)’s for which the solution
{k(t) } of DLSP with inputs (s, &, d) is valid. The inputs of DLSP are: s, &, d.

Theorem 3. The set AB is given by the following system of (partly nonlinear) in-
equalities:

Pkt a) < b < q(k: 8, a); (15)
te=1,2, ., T; E=0,1,...,t —1;
ulk,t) < a < vk t); (16)

t=1,2,..,T; c=0,1,...t —1;
s+as8>0; h-+akh>0; d+bd,>0; t=12 ..,T; 17
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where p(k, t, a) equals to
— ((s + @ - 8) - ds(k, t)/(h + b - k) = dh(k, t)) /dh(k. t) (18)

of de(k, t) is positive, otherwise it 1s negative infinite and q(k. t. a) also equals to (18)
if dh(k, t) is negative, otherwise it is positive infinite; the values u(k,t) and v(k,t) are
determined as in Theorem 1 provided that dh(k,t) == 0, otherwise they are negative or
positive infinite respectively.
Proof. For inputs (3, h.d’) it must be true that
fe,ty=f); t=12..,T; k=0,1,..t—1. (19)

If (s, 2, d’) and (s, h, (~l') have the same regeneration set {k(¢)} then we can write (19)
as
(s+a-8) sk, ty+ (h+a-hy- (hk,t) + b hk. t))

= (s+a-3)-st) + (h(t) + b h(t)) (b + bk

or otherwise

~—~—

~

(s 4+ a-5) -dsk,t) - (b + a-h)-dh(k,t)
= —(h—%—a-ig)-b-dﬁ(k,t).

Then, if (ll;(k, t) == 0, conditions (15) directly follow, while if dh(k,¢) = O then it
must be valid that

s-ds(k,ty + h-dh(k,t)
> —a- (5-dsk, t) -+ h - dh(k, t))
and from this assumptions (16) are necessary.

The sufficiency of the conditions can be seen easily. T

Example. Let T =3; s=5,58=1; h =2, h=—1; d=(3,2,1) and d =
= (—1, 0, 1). Then the following parameters will be determined (compare Table 1).
Then dh(k, t) = O for index pairs (k, t) = (0. 3) and (2. 3). For these assumptions the
inequalities
—T/(e —2) —4 < b,
1=0

hold, (ZlAz(k, t) = 0 and the denominator of (8) is not equal to zero for the index pair
(k,t) = (1, 2) and the constraint from this is

—13a.
Table 1
£ = |1 9 3 t = |1 2 3 t = i 2 3
k=0 |0 0 2 E=0 0 2 4 E=0 |1 1 1
1 ‘ —~ 0 1 1 — 0 1 1 - 2 2
B ;. — - B 2 . 2
n(t) 0 0 1 L(t) 0 2 1 s(t) 1 1 2
The values of lfz‘(l:. t) The values of (%, t) The values of s(k, t)
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Fig. 1. Set AB-

Table 2
T = 3 | 5 | 7 ] 10 | 1
computation time on L 0:7 1 0:19 ‘ 0:33 | 1:09 i 2:41

IBM-XT (min:sec)

The other constraints are redundant.
The solution of the problem is represented by Fig. 1. Table 2 contains the compu-

tation time of some examples whose cost inputs are as above while d and d are generated
randomly. The computation time includes the printing at the monitor out of all
constraints describing the set AB.
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Kurzfassung

Die Arbeit liefert eine Analyse des parametrisierten dynamischen LosgréB8enmodells.
Drei Fille der Parametrisierung werden untersucht: (1) Fix- und Lagerkosten, (2) Bedarfs-
vektor, (3) Kosten und Bedarf. Fiir alle drei Fille werden Stabilititsbereiche der Parameter
ermittelt, d. h., es wird gezeigt, fiir welche Parameter eine durch den Wagner-Whitin-
Algorithmus berechnete Lésung giiltig bleibt.

In den Fallen (1) und (2) werden die Parameterintervalle aus einfachen Systemen von
Ungleichungen abgeleitet. Im komplizierten Fall (3) wird der Stabilitatsbereich von zwei
Parametern mit Hilfe eines Rechnerprogramms dargestellt.

Pesrone

HMcciregoBana napaverpuyeckas AMHAMMYeCKad 3a7Jaya yIpaBJeHUs sanacavu. Pac-
CMOTPEHBI TPU YACTHBIX cayyas: (1) IdA HOCTOAHHBIX H3Jep:ieK U H3JepikeK XpaHeHusd,
(2) 1121 BeKTOpA cnpoca, (3) LA u3Tepskex 1 cnpoca. Iaa oaTUX caydaes Haiizena 00JacThb
VCTOIYHBOCTH IAPAMETPOB, T.e. NOKA3aHO NId KAKUX 3HAYEHHIl MapaMeTPOB OCTAITCH
BEDHBIMH pelleHNs, HalileHHble anroputmMoM Baenepa u BatimuHna. AHAJIH3 MapaMeTpPoB
Tas cayyaes (1) u (2) npousBeieH JccieI0BaHIeM NPOCTHIX CHCTEM HepaBeHCTB. 06JacTh
VCTOIMMBOCTH 1A G0Jiee CJIOKHOTO cjydyas IABYX HapaMeTpoB (3) ompeJeideHa IpH Io-
MOIIM IIpOTPaMMBbl Ha MEPCOHAJBHOM KOMIIbIOTEpe.
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