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Abstract This paper focuses on analysing the multi-stage assembly system with cost function, which is
widely used in the literature. We shall point out that the set of cost inputs having the same optimal
production plan is a convex cone. In äddition, the structure of an optimal solution is analysed to reveal the
stability region.
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l. Introduction

The dynamic lot-size model is one of the best
known standard models in OR/MS, and the pro-
cedures for solving the problem have received
considerable attention in the literature. In ad-
dition to the optimal dynamic programming and
branch-and-bound algorithms, numerous heuris-
tics have also been developed for both single- and
multi-level problems. However, relatively little ef-
fort has been made to investigate the stability of a
schedule. The stability region of a schedule means
the set of cost inputs having the same production
plan for a given demand series.

This question is of interest for both theory and
practice. It would be useful for the practitioner to
know the range of cost parameters over which the
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optimal production is not altered. Characterizing
the shape of the stability region is the theoretical
question of interest.
. The single-level lot-sizing stability problem was

analysed by Richter (1987). Using constant set-up
and holding costs and the assumption that the
cost inputs belonging to the stability region have
the same production plan for every problem with
period t, t : I, 2,.. ., T, where 7 is the length of
the planning horizon, he gave the explicit form of
the stability region. He also pointed out that the
stabitity region is a convex cone. Omitting the
need of these strong assumptions, we show that
this convex cone property can be extended to
more general multi-level problems with certain
cost functions. Analysing the structure of an opti-
mal schedule, we also show that this production
plan can be expressed by a regeneration matrix.
The advantage of this production-quantity-inde-
pendent plan definition is that this could open the
way to a discussion on the impact of the changes
in demand.
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The paper is organized as follows. Section 2
states the multi-level problem and shows that the
stability region is a convex cone. In Section 3 we
analyse the structure of an optimal solution and in
Section 4 the main results are summarised and
ideas for further research are provided.

2. The stability region of the multi-stage assembly
system

In a multi-stage assembly system, manufactur-
ing of an item requires a certain number of com-
ponents and, in turn, is itself a component of a
single parent item. The product structure in this
production process can be represented by a di-
rected acyclic network where the set of nodes
represents the set of items and the set of directed
arcs denotes the processing operations- Let the
number of items be M and let M be the only
facility which produces assemblies used to supply
the customer's demand. Raw materials are availa-
ble in unlimited amounts as input to source facili-
ties. All facilities are allowed to carry inventories;
facilities 7 to M - I carry in-process inventories
while the Mth f.ac:irtty carries the finished good
inventory. It is-assumed that production and ship-
ment- are instdntaneous, and that one unit. of pro-
düction on facility m requires one unit of input
frorir every facility k, keA(m), where ,4(n) is
the set of immediate predecessors of z. Backlog-
ging of demand is not allowed. (It is worth notic-
ing that more general product structures can be
transformed to this assembly system-see Afen-
takis and Gavish (1986).)

Let B(m) denote the unique immediate succes-
sor, while P(m) and R(z) denote the set of all
predecessors and successors of node m, respec-
tively. Then, in the assembly system represented
by Figure 1 we have B(2) :  {4} ,  A(4) :  {2,3} ,
R (1 )  -  { 2 ,  4 } ,  and  P$ ) :  { r , 2 ,  3 } .

Let d, denote the demand in period r; it is
assumed that the demand is known for periods I
to f. Let X-, denote the production at facility ,n

,/ '
2

" /

in period /; the cost of this production is denoted
C^,(X^,). 1-, is the inventory at the end of period
/ at facility m and the corresponding holding cost
is  H^,( I^ , )  for  a l l  me.( I ,  M) and for  a l l  re
(1, f ), where

( a , b ) : { a , a + 1 , . . . , ä } .

L e t  B ( M ) :  t M  +  l j .
Then the multi-stage assembly problem, prob-

lem (1), can be written as

Minimize

subject to

I ^ , :  f  ̂ . , - t *  X ^ , -  X " ( ^ \ . ,

for  a l l  me (1,  M) and t  e  (7,  T) ,

Xu* r . , :  d ,  f o r  a l l  t  e  (1 ,  T ) ,

I ^ o :  I ^ r : 0 ,  I ^ , > - 0 ,  X ^ , > - 0

for  a l l  me (7,  M) and r  e (1,  I ) .

{ ä, t,(c^,( x^,) + H ̂,( I ̂ ,,, 
lr",

*o^f,",))'

(1b)
(1" )

(1d)

J

\

When cost functions C and H are concave,
Veinott (1969) showed that a node can have at
most one positive input in an extreme point solu-
t ion,  i .e . ,  1o, . , -7X^, :0.  Now let

(1u) '

and

H ^ , ( I ^ , ) :  h ^ I ^ , ,  h B ( ^ , ) > -  h ^ ,

for  a l l  m e (1,  M) and t  e  (7,  T) ;

then (1a) can be written as

( M l r r
Minimize { I  I  s^L r^,+ c-l  X^,

\ a : 1  \  , : 1  r : 1

r  \ \
+ h ^ D  I ^ , ' . . ; ,

r - t  l l

where )'^,e {0, I}, X^, ( N-y-,, and N is a large
positive number, or

( M I T

Minimize { I I s^l y^,+ dc^
\  - - r  \  r : l

Figure 1. An assembly system where d:LT:rd,.
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Further, let there be a demand series given. For
cost inputs we use the following notations: s':
( s 1 , . . . , s ; r , ) ,  h '  :  ( h p . . . ,  h t n , ) ,  " '  :  ( c 1 , . . . ,  c u ) ,
and d' : (d, d,. . ., d), where primes denote
transposition. Now let us consider an optimal
solution Xf,, of problem (1) with cost function
(1a)' and let matrix X" be of order M x T with
X":TX: , | .

Let SR(X") denote the set of cost inputs for
which problem (1) has an optimal schedule with
production plan X". SR(X") is called the stability
region.

Theorem l. SR(X") is a conuex cone in R3M.

Proof. lf (s'c'h') e SR(X"), then it can easily be
seen that )t(s'c'h') e SR(X.), Ä > 0, by multiply-
ing the entire cost function by a constant. Let
(i't'fr') be a cost vector for which there is no A
such that

\ ( s ' c ' h ' ) :  ( S ' ö ' i t ' ) .

fi G'e'it') e SR(X"), then we have to show that
G'e'ir ') e SR(X"), where

(s 'e' fr ' ) :  t r(s 'c ' i ' )  + (1 - ^)(s 'ö'n')

and 0 < Ä < 1. But if a solution is optimal for two
cost vectors, then it is optimal for their sum, too.
tr

(It is easy to see that the theorem is also true
for time-dependent costs.)

3. dnalysing the structure of an optimal solution

Next we show that X" can be defined by a
regeneration matrix. For this purpose let us analyse
the structure of an optimal solution of problem
(1).

Definition. A schedule is nested if X^,> 0 implies
that X"r^r., > 0. Period t is an m-level regenera-
tion point in a T period problem if 1,,:0 for all
j  e  R (m) .

Crowston and Wagner (7973) pointed out that,
with cost function (1a)', problem (1) has a nested
optimal schedule.

Let l^(t) and r be adjacent rz-level regenera-
tion points tn a T period problem, /_(/) < r, and
matrix J. be of order M x T; Jr: [7-.o], where

ll^(k) if k is an m-level regeneration
;  .  :  I  po int in  a Iper iodproblem,

J m . k -  \  '

\L otherwise.

"/, is called the 7" period regeneration matrix.

Production Condition. X^,uO iff period r- 1 is
an z-level regeneration point.

Lemma l. A schedule satisfying the Production
Condition is a nested schedule.

Lemma 2. Let a regeneration matrix J, be giuen-
Then the following schedule defined on J, is nested:

i f  l _ ( t )  +  1  :  / ,

X u ( ^ r . ,  i f l ^ ( r ) + 1 < t ,

( 2 )

and

X - . , : 0  i f  j - . , - � r :  r  -  1

f o r  m  e  ( 1 ,  M >  ( X r * r . , :  d , ) .

Proof. The schedule satisfies the Production
Condition thus it is nested. tr

Let s-(t) and h^(t) denote the total number
of set-ups and the total inventory, respectively, at
the m-th stage in the first r periods with the
provison that period r is an m-level regeneration
point. Let

I

h f . , :  I  ( r - l - 7 ) X " < ^ > . ,  f o r / < r .  ( 3 )
r : l + 1

with the assumption that / and r are neighbouring
m-lev el regeneration points.

Thus we can write

ä - (0 )  :  g ,

h ^ ( t ) :  n ^ ( t ^ ( t ) )  *  h 7 ) , , t . , ,

and

s- (0 )  :  9 ,

s ^ ( t ) : r - ( i - ( / ) )  +  I ,

( X " , ^ , . ,
I

X - . t ^ t , t * t :  
\  i
\  r : / - ( r ) +  I

(4)

( ) )



r72 K. Richter, J. Vörös ,/ On the stability region for multi-leuel inaentory problems

where / is an rn-level regeneration point in the
?"-period problem.

Example. Let

, _ f i  o  2 l" ' - [ 1  
o  2 ] '

i . e - ,  M :2 ,  T :3  and  A (2 ) :  { 1 } .  Then ,

s 1 ( 3 )  : 2 ,  & t ( : ;  : 6 ,

s 2 ( z ) : 2 ,  h 2 ß ) :  d 2 .

The schedule defined by,/, is shown in Figure 2.

Lemma 3. Let J, be a regeneration matrix and
Cr(s'c'h') be the cost ualue of an optimal nested
schedule for cost inputs (s'c'h') in the T period
problem. Then,

C r ( s ' c ' h ' ) :  s ' s ( I )  +  c ' d  +  h ' h ( T ) ,

where

s ( T ) '  :  ( " ' ( r ) ,  . . . ,  t '  ( T ) ) ,

h ( T ) '  :  ( h ' ( T ) , . . . ,  h ,  ( r ) ) .

The proof of Lemma 3 simply follows from the
definition of the paramerers.

Lemma 4. (s'c'h') e SR("[) iff there is no i, for
which

s ' f ( f  )  +  c ' d +  h ' k Q )  < s ' s ( ? " )  +  c ' d +  h ' h ( T ) ,
(6)

where 3(T), i�1f1 ana sQ), h(T) are defined on
J, and fr, respectiuely.

As, for example with the help of l-element
binary numbers beginning with 1, all regeneration
matrices can easily be generated, Lemma 4 offers

Figure 3. The stability region of facility 2, provided that s, :5,

h t : l

a simple enumeration procedure for exhibiting the
stability region. Then, applying (6) for ./, defined
earlier, SR(J3) is determined by the following
inqual i ty  system for  dr :1,  dz:2,  dr :5:

3 s ,  * 3 s .  ) 2 s r * 2 s r * 2 h 2 ,

2 s ,  * 3 s r *  5 h ,  2  2 s ,  +  2 s r *  2 h 2 ,

2 s r + 3 s r * 2 h ,  2 2 s r * 2 s r * 2 h 2 ,

:
s ,  -F  s ,  +72h2>-  2s ,  *  2s r+  2hz .

Fixing sr : 5 and hr:7 the schedule given by ./,
does not change if s, and ä, satisfy the following
system:

7 0 h 2 -  5 2  t r 2 2 h " * 2 ,  s r > 0 ,  h z > - 1 .

Figure 3 shows the stability region of facility 2.

4. Summary

This paper has analysed the multi-stage assem-
bly system and stated that its stability region is a
convex cone. It is shown that an optimal nested
schedule can be expressed with the help of a
regeneration matrix which is useful in the enumer-
ation procedure used for revealing the stability
region. The regeneration matrix is a quantity-inde-
pendent plan representation. However, the enu-
meration procedure is exponential in complexity.
For the facilities in the series inventory problem, a
dynamic programming type (see Chand, 1983)
procedure would increase the quickness of compu-
tation if we were interested in revealing the sta-
bility region of costs having the same m * 7 level

?x
l - \
T
1 1  1 2  ) l ,

l l.1. J
?t1 z? 23t lJ i l

d t  d2  d3

Figure 2. The schedule defined by J.



regeneration points for every possible combina-
tion of neighbouring m level regeneration points,
me (7, M - 1). (This would mean the direct ex-
tension of Richter's result for the multi-stage
problem using the solution of the linear inequality
system.) However, even for the single-level prob-
lem, practice does not need this assumption. Thus,
the challenging task for the researchers in this
field remains: to find, under mild conditions. ef-
fective algorithms for revealing SR(-fr).

Because of its practical importance, further re-
search may tend to analyse the effect of changes
in demand forecasting (for single-level problems,
see Richter and Vörös, 1988).
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