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Abstract

The analysis of sources and sinks of CO2 is a dominant topic in diverse research fields and in

political debates these days. The threat of climate change fosters the research efforts in the natural

sciences in order to quantify the carbon sequestration potential of the terrestrial ecosystem and

CO2 mitigation negotiations strengthens the need for a transparent, consistent and verifiable Moni-

toring, Verification and Reporting infrastructure. This paper provides a spatio-temporal statistical

modeling framework, which allows for a quantification of the Net Ecosystem Production and of

anthropogenic sources, based on satellite data for surface CO2 concentrations and source and sink

connected covariates. Using spatial and temporal latent random effects, that act as space-time

varying coefficients, the complex dependence structure can be modeled adequately. Finally, spatio-

temporal smoothed estimates for the sources and sinks can be used to provide dynamic maps on

0.5◦ × 0.5◦ grid for the Eurasien area in intervals of 16 days between September 2009 and August

2012. Finally, the self-reported CO2 emissions within the UNFCCC can be compared with the

model results.

Keywords: Anthropogenic CO2 emissions, Net Ecosystem Production, Linear mixed effects, Spatio-

temporal model
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1 Introduction

The increasing concentration of the greenhouse gas CO2 in the earth atmosphere has been identified as

one of the main drivers of climate change. Likewise, the study of sources and sinks of CO2 has attracted

much interest in many research disciplines and in political debates on climate change and CO2 emission

mitigation. Current efforts to limit and reduce fossil CO2 emissions, whether they are voluntary or

part of international agreements, are self-reported statistical data by emitters. They are used to define

baselines and assess the effectiveness of climate and energy policies over time. Self-reported inventories

of CO2 emissions are primarily based on energy-use statistics collected for different sectors. They

offer limited transparency and their accuracy and completeness cannot be assessed independently. In

order to monitor the effectiveness of an international climate agreement, self-reported emissions data

will need to be independently assessed for their accuracy and reliability. Besides the comparably

small anthropogenic CO2 source, the terrestrial ecosystem is responsible for the majority of CO2

fluxes between the surface and the atmosphere. The carbon sequestration potential of the terrestrial

ecosystem is therefore another important topic in the recent research, that can be monitored through

the Net Ecosystem Exchange (NEE), which captures the net carbon flux between an ecosystem and

the atmosphere [Watson et al., 2000]. Several studies deal with the decomposition of NEE into its

components (e.g. Reichstein et al. [2005] and an overview is given in Stoy et al. [2006]), others rather

focus on particular regional ecosystems (e.g. Suyker and Verma [2001] and Saigusa et al. [2002]).

Another branch of literature is focused on the integration of ecosystem models with remotely-sensed

data, as the Normalized Difference Vegetation Index (NDVI) (e.g. Veroustraete et al. [1996]).

The aim of the present article is multifold. Based on satellite data on surface CO2 concentrations a

spatio-temporal statistical model is used to perform spatio-temporal smoothing and predictions. More

importantly, sources and sinks of CO2 are quantified by exploiting the spatio-temporal dependence

structure between the CO2 data and covariates, representing common sources and sinks of CO2. Using

spatial and temporal latent random variables, as space-time varying coefficients for the covariates,

anthropogenic and ecosystem emissions can be derived. The model is able to capture the seasonal

behavior and the spatial distribution of CO2 and its sources and sinks, such as the Net Ecosystem

Production and anthropogenic emissions. Finally, the inferred anthropogenic emissions allow for a

comparison with the self-reported data of the emitters.

Spatio-temporal statistical models have become very popular in environmental studies and a lot of

model classes have been developed in this direction, whereas an overview can be found in Cressie and

Wikle [2011]. Through the technological progress in the last decades, environmental data can be col-

lected from space. However, in that way the amount of data becomes huge and statistical applications

are very high-dimensional. Despite the technological development in computing power, computational
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bottlenecks are often encountered. Therefore recent efforts were focused on the development of ef-

ficient statistical models, that are able to handle large data sets. Prominent approaches here are

dimension reduced models (e.g. González-Manteiga et al. [2012], Cressie et al. [2010] and Katzfuss and

Cressie [2011]), covariance tapering [Furrer et al., 2006] and the full-scale approximation [Zhang et al.,

2013], as a combination of both previous approaches. For a comparison study of these approaches

with an efficiency evaluation, the reader is referred to Vetter et al. [2014]. A recent development are

dynamic spatio-temporal models including latent variables. In a state-space framework rapid com-

putations can be achieved through the application of the Kalman filter. Examples can be found in

Mardia et al. [1998], Wikle and Cressie [1999], Farrell and Ioannou [2001], Cressie and Wikle [2002],

Wikle and Hooten [2006] and Voutilainen et al. [2007]. A combination of all the aforementioned large

data approaches is the spatio-temporal linear mixed effects model with space-time varying coefficients

outlined in Fassò and Finazzi [2010, 2011, 2013], whereas a Matlab implementation can be found on

http://code.google.com/p/d-stem/.

The present article is structured as follows. In section 2, the theoretical background, related to the

global CO2 cycle and the statistical model, is outlined. Furthermore the utilized data is presented and

an exploratory data analysis is conducted. Section 3 defines the model used for the analysis of the

surface CO2 concentrations and a discussion of the estimated parameters follows. Using the estimated

model, the inferred CO2 sources and sinks are analyzed and discussed. A thorough investigation of the

estimated anthropogenic fluxes is done in section 4, which also comprises a comparison of the model

results with the CO2 emissions obtained from the self-reports agreed on in international agreements

([UNFCCC, 2015]) and from scientific estimates based on energy-use statistics ([Olivier et al., 2015]).

2 Spatio-temporal statistical analysis of the global CO2 cycle

The main contribution of the present article is to analyze the CO2 cycle and its sources and sinks and

to provide an alternative approach to the quantification of global anthropogenic CO2 emissions based

on a state-of-the-art spatio-temporal statistical model applied to satellite data. In that way, the spatial

and temporal distribution of ecosystem and anthropogenic sources and sinks of CO2 are inferred from

data on surface CO2 concentrations. This section is structured as follows. First a brief description of

the global CO2 cycle is given in section 2.1. Subsequently, the spatio-temporal data sets, which consist

of remotely sensed satellite observations, are discussed in section 2.2 and an exploratory data analysis

follows in section 2.3. Finally the statistical methodology is outlined in section 2.4.
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2.1 The global carbon cycle

Local surface CO2 concentrations represent the outcome of a complex system of carbon exchange

between sources and sinks at the ground level and the atmosphere. In order to derive the spatial and

temporal distribution of CO2 sources and sinks from data on local concentrations it is necessary to

identify the drivers in the global carbon cycle. As Vetter et al. [2015] point out, the largest carbon

fluxes result from the terrestrial ecosystem. According to Prentice et al. [2001], the driving processes

here are photosynthesis, autotrophic and heterotrophic respiration and the removal of living biomass

(e.g. through fires or harvest). The amount of carbon converted during photosynthesis is called

Gross Primary Production (GPP). Since around half of the fixed carbon is used and released back

into the atmosphere by the plant, the Net Primary Production (NPP) is the difference between GPP

and autotrophic respiration. Furthermore, dead organic matter provides another source of CO2, since

it is decomposed by organisms in the soil (heterotrophic respiration). Reducing the NPP by the

heterotrophic respiration results in the Net Ecosystem Production or Exchange (NEP/NEE), which

represents the total carbon budget for a certain local vegetation. Finally, after accounting for losses

of carbon stock through fires and the removal of vegetation through mankind yields the Net Biome

Production. In a long term equilibrium system, this budget should be balanced. However there are

impact factors for the carbon cycle, which lead to unbalances, as [Prentice et al., 2001][p. 186] state.

Another major driver in the global carbon cycle are ocean carbon processes. Oceans are large carbon

pools and through dissolution processes they are able to take up a large fraction of anthropogenic CO2.

In the absence of the oceanic system, atmospheric CO2 concentrations would be around 200 ppm higher

[Prentice et al., 2001][p. 198]. However, since this article examines CO2 source/sink behavior at the

surface on land area, the interested reader is referred to Prentice et al. [2001] for a thorough explanation

of the carbon exchange mechanisms in the oceans. The remaining source of CO2 is the human influence,

which is given a special focus in this article. The majority of anthropogenic emissions result from

burning fossil fuels. With a share of 67.4% in 2013, fossil fuels are the dominant source of energy

[OECD/IEA, 2015][p. 24] and mainly contribute to the increase in atmospheric CO2 concentrations.

Another anthropogenic CO2 source results from human’s impact on terrestrial ecosystems through

changes in land-use, especially deforestation. These types of anthropogenic emissions make up a share

of 10-30% of total emissions [Prentice et al., 2001][p. 204].

2.2 Satellite Data

The present study is based on remotely sensed data from satellites. Observations of surface CO2

concentrations are used and linked to data sets related to common sources and sinks of CO2. The

region of interest of this study is bounded between 30◦N and 60◦N latitude and 10◦W and 150◦E
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Figure 1: ACOS-GOSAT surface CO2 concentrations for the 3rd− 19th of December 2009. Unit: ppm

longitude and comprises most of the land mass of Europe and Asia. The time span was chosen from

the 30th of September 2009 to the 13th of August 2012, whereas time intervals of 16 days are applied.

All data sets are averaged into a 0.5◦× 0.5◦ grid, whereas only grid cells on land will be considered for

the analysis. The resulting observation grid contains 3629 cells and is observed 67 times. Important

to note is that the data on surface CO2 concentrations are very sparse. There are only around 400

observations per time interval, resulting in about 11% non-missing grid cells. All variables have been

standardized in advance with respect to their overall mean and standard deviation, in order to improve

numerical stability of the estimation procedure. Furthermore the CO2 data have been logarithmized

before the standardization. A short description of the data sets is given in the following paragraphs.

Surface CO2 concentrations - Japan’s Greenhouse Gases Observing Satellite, GOSAT, together

with the retrieval algorithms developed by the "Atmospheric CO2 Observations from Space" (ACOS)

[O’Dell et al., 2012] team are providing global remotely sensed measurements of the vertical column of

CO2 concentrations, expressed in Parts Per Million (PPM). Besides total column and column average

data, the CO2 concentration is derived for 20 different pressure levels. For a thorough description of

the retrieval algorithm, the reader is referred to Osterman et al. [2013]. The layer closest to the surface

is used in this study, due to it’s proximity to the CO2 sources and sinks. The satellite is orbiting the

earth synchronous to the sun, guaranteeing an almost constant local-sun time for each observation at

around 13pm. Consequently, the measurements are not affected by intra-day variations. The satellite

returns almost to the same footprint after 3 days [Yokota et al., 2009]. A sample of the data for the

3rd-19th of December 2009, transformed into the aforementioned observation grid and averaged over

time intervals of 16 days, is depicted in Figure 1. As can be seen, the data coverage is very sparse.

Measurability is limited through cloud coverage and also snow cover leads to missing data, as can be

seen in Figure 1, where a large fraction in the northern part of the map is colored white, indicating no

available data.
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Figure 2: Normalized Difference Vegetation Index for the 30th of September - 15th of October 2009

Normalized Difference Vegetation Index The most influential driver in the global carbon cycle in

terms of intra-annual CO2 fluxes is the terrestrial ecosystem. In order to adequately capture it’s source

and sink behavior, the relationship between surface CO2 concentrations and the local vegetation has to

be modeled. For that purpose, vegetation indices can be used. The Normalized Difference Vegetation

Index (NDVI) is the most frequently applied index and captures vegetation activity at the land surface

or the density of living vegetation in an area through the measurement of wavelengths of red and

near-infrared light that is absorbed and reflected by plants [Huete et al., 1999]. NDVI data can be

obtained from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS)[Huete et al., 1999]

in various global grids with averages over 16 days intervals. In Figure 2 the NDVI is depicted for the

interval between the 30th of September and the 15th of October 2009. In this study the Net Ecosystem

Exchange, as outlined in Section 2.1, is assessed through modeling the space-time varying relationship

between the NDVI and surface CO2 concentrations, as it was shown in Vetter et al. [2015].

Nitrogen Dioxide Anthropogenic CO2 emissions mainly result from the combustion of fossil fuels

and therefore occur during energy production, road traffic and industrial production. In order to

capture anthropogenic CO2 sources, the relationship between surface CO2 concentrations and other

air pollutants, which are produced alongside CO2 during fossil fuel combustion, is modeled. The first

pollutant is Nitrogen Dioxide (NO2), which is a by-product of all processes of fossil fuel combustion,

mainly road traffic and electricity production. This study uses vertical tropospheric column densities

of NO2, which track NO2 pollution near the surface, available from the Ozone Monitoring Instrument

on-board the EOS-Aura satellite1 and documented in Chance [2002]. The NO2 data has been averaged

over time and space, according to the 16-day interval and the 0.5◦ × 0.5◦ grid, and standardized for

numerical stability reasons. Despite the high data coverage there is still a small amount of missing data,
1URL: http://projects.knmi.nl/omi/research/product/product_generator.php?&info=intro&product=NO2
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Figure 3: Tropospheric NO2 column density for the 30th of September - 15th of October 2009. Unit:

1015molec./cm2

especially in winter, where snow cover limits the measurability. For that reason a nearest neighbor

interpolation was applied to assure that the data set can be used as a covariate. A sample map for

the period 30th of September and 15th of October 2009 is provided in Figure 3. High concentrations

of NO2 can be mainly found in urban and industrialized ares, such as Europe and China, where fossil

fuel combustion is high.

Carbon Monoxide The combustion of carbon-based fuels leads to the emission of CO2. Since the

combustion is not always complete, Carbon Monoxide (CO) is also a frequent by-product of these

processes. Therefore its emissions are characterized by the same spatio-temporal pattern as for the

anthropogenic CO2 emissions. The CO data used in this study can be obtained from the Measurement

of Pollution in the Troposphere (MOPITT) instrument flying on NASA’s Earth Observing System Terra

spacecraft2 and represents CO surface mixing ratios. A sample of the data for the period between 30th

of September and 15th of October 2009 is illustrated in Figure 4, whereas missing data due to snow

coverage have been interpolated using the nearest neighbor method. A comparable hot spot pattern

as for the NO2 sample can be identified with increased concentrations in industrialized urban areas.

However CO hot spots are less pronounced in Europe.

2.3 Exploratory Data Analysis

A closer look at the main characteristics of the data is required in order to develop a suitable statistical

model in space and time. In Figure 5 the spatial average of the CO2 surface concentration data is

depicted over time. Noticeable here is the strong seasonal behavior with lower concentrations in the

summer months and elevated values from autumn to spring. The seasonal cycle of CO2 concentrations
2URL: https://www2.acom.ucar.edu/mopitt
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Figure 4: Carbon Monoxide surface mixing ratio for the 30th of September - 15th of October 2009.

Unit: ppbv
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Figure 5: Spatial average of surface CO2 concentrations over time, Unit: ppm
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Figure 6: Spatial average of the NDVI over time
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Figure 7: Sample Periodogram for the spatial average surface CO2

is closely linked to the growth cycle of the terrestrial vegetation. This becomes apparent in comparison

with Figure 6, where the spatial average of the amount of living vegetation, represented by the NDVI,

is illustrated over time. Here an opposite seasonal cycle is visible with a peak in the NDVI in July to

August and lower levels from November till March. However the shape of the CO2 cycle is different

from the NDVI cycle, which can be seen from the two-peak behavior in autumn and winter. This is

a result from two overlapping cycles, as can be seen in the sample periodogram for the CO2 data in

Figure 7. The two peaks in the periodogram are at frequencies, which correspond to an annual and

a semi-annual cycle. However, these two mixed cycles both result from the terrestrial ecosystem. As

described in section 2.1, vegetation acts both as a CO2 source and sink through photosynthesis and

ecosystem respiration. Jiang et al. [2012] find out, that the cycles of GPP and ecosystem respiration

are shifted by 6 months, resulting in a two-peak behavior of the NEP, which translates into the same

behavior for the CO2 surface concentration. However, since data on NEP and ecosystem respiration

is not available on a global scale for small time intervals, the space-time varying relationship between

vegetation, as the source of GPP and respiration, and CO2 is modeled directly. In Figure 8 the empirical
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Figure 8: Empirical linear correlation coefficient of the spatial averages of CO2 and NDVI over time

linear correlation coefficient of the spatial averages of CO2 and NDVI is depicted over time. Positive

values indicate a net source behavior and negative correlations correspond to a net CO2 sink of the

terrestrial ecosystem. In effect, depending on whether photosynthesis or respiration predominates the

terrestrial ecosystem seasonally turns into a CO2 sink or source. The main driver behind these seasonal

cycles here is the rate of incoming solar radiation and this quantity not only changes in time, but also

varies with space. Depending on the latitude region, the amplitude and phase of the seasonal growth

cycle of plants change, whereas higher amplitudes can be observed in northern regions. Consequently,

capturing the space-time varying dependence structure between the CO2 surface concentration and

the NDVI, in order to cover the Net Ecosystem Production, becomes a critical requirement of the

statistical model.

2.4 Spatio-temporal linear mixed effects model with varying coefficients

As outlined above, the dependence structure between the surface CO2 concentrations and the explana-

tory variables is changing in space and time. In order to capture the distribution of the CO2 sources

and sinks resulting from the terrestrial ecosystem and from human activities a suitable statistical model

is needed, which incorporates a spatio-temporal dependence and cross-dependence structure. For this

purpose the spatio-temporal linear mixed effects model with varying coefficients proposed in Fassò and

Finazzi [2013] is applied. The general univariate version of the model is summarized below.

Let y(S, t) denote the vector of observed responses at the set of spatial locations S = {s1, . . . , sn}
and at time point t = 1, . . . , T , where si ∈ D, i = 1, . . . , n and D ⊂ R2, then

y(S, t) = Xβ(S, t)β +

c∑

i=1

αi · xw,i(S, t)�wi(S, t) +

p∑

j=1

xz,j(S, t) · zj(t) (1)

+z(t)1 + δw(S, t) + ε(S, t),

where the n×k matrix Xβ and the n×1 vectors xw,i, i = 1, . . . , c and xz,j , j = 1, . . . , p consist of known

covariates measured at the set of locations S and time t. The scalars α = (α1, . . . αc)
′,β = (β1, . . . , βk)

′
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and δ are unknown scale coefficients and ’�’ is the Hadamard product of two matrices. The n × 1

vectors wi, i = 1, . . . , c and w represent spatial random fields. Assuming multivariate normality, the

independent, but spatially colored, Gaussian processes are

wi(S, t) ∼ Nn

(
0,Σi(H

obs, θi)
)

; i = 1, . . . , c (2)

w(S, t) ∼ Nn

(
0,Σ(Hobs, θy)

)
,

where Σi, i = 1, . . . , c and Σ are spatial covariance matrices and Hobs is the matrix of pairwise geo-

graphic distances between each observation location si, i = 1, . . . , n. The spatial dependence is deter-

mined through a valid spatial covariance function C(d(sh, sl), θi) or C(d(sh, sl), θy) with d(·, ·) as the

geographic distance function and parameterized by θi or θy, respectively. In this study the exponential

covariance function is applied

C(d(si, sj), θ) = exp(−d(si, sj)/θ). (3)

In order to account for regional differences in the cross-dependence between CO2 and the explana-

tory variables, the spatial random effects wi, i = 1, . . . , c represent space varying coefficients. The

latent random variable w models the residual spatial auto-correlation of the data. Likewise the tem-

poral random effects zj , j = 1, . . . , p and z are Gaussian processes with lagged cross-correlation and

auto-correlation, respectively. The vector of temporal random effects z(t) = (z(t), z1(t), . . . , zp(t))
′ is

assumed to follow a vector autoregressive process of order one

z(t) = Gz(t− 1) + η(t), (4)

where G is a stable (p+1)×(p+1) transition matrix and η(t) ∼ Np+1(0,Ση) is a Gaussian vector of tem-

poral innovations with covariance matrix Ση. The initial state is distributed as z(0) ∼ Np+1(ν0,Σ0).

Finally, the vector ε(S, t) ∼ Nn(0, σ2
ε · I) models the measurement error of the data process at the

observed locations S and time t and represents a Gaussian white noise process in space and time. The

n×1 vector 1 and the n×n matrix I denote the unit vector and the identity matrix, respectively. The

estimation of the model parameters shown in equation 5 is performed though a maximum likelihood

procedure, which is described in detail in Fassò and Finazzi [2013].

Ψ = {α,β, δ, σ2
ε ;ν0,Σ0; G,Ση; θy, θ1, . . . , θc} = {Ψy; Ψz0 ; Ψz; Ψw} . (5)

In a complete-data log-likelihood representation, estimates are obtained through an EM-algorithm,

which results in an iterative algorithm with mostly closed form updating formulas for the model

parameters. Within this setting, the explanatory variables are connected with a fixed effect and two

random effects, which account for the space-time varying dependence with the independent variable.
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3 Spatio-temporal statistical assessment of CO2 sources and sinks

In order to adequately describe the CO2 cycle and its sources and sinks, the methodology outlined in

section 2.4 is now used to model the CO2 surface concentration data and its space-time dependent

relationship with ecosystem and anthropogenic source and sink data. The main focus of the modeling

approach is to capture the data characteristics shown in section 2.3. In particular the space-time

dependent relationship of CO2 and the NDVI is of importance, since the ecosystem is the main driver

behind variations in surface CO2 concentrations and is responsible for the two-peak seasonal behavior,

shown in section 2.3. At first, the model for the surface CO2 concentration is defined and the estimation

results are presented and discussed in section 3.1. Afterwards, the results of the spatio-temporal

smoothing are outlined and the influence of ecosystem and anthropogenic processes on surface CO2 is

illustrated in section 3.2.

3.1 Model estimation

The linear mixed effects model for the surface CO2 concentration with space and time varying co-

efficients for the covariates is shown in equation 6. Apart from the explanatory variables shown in

section 2.2 additional covariates were introduced. These are the product of CO and NDV I and of

NO2 and NDV I. Emissions of CO and NO2 do not solely result from anthropogenic sources, but

also occur in relation with ecosystem processes. Both pollutants are produced during wild fires and

CO is also produced to a small proportion during the heterotrophic respiration. Since we are mainly

interested in the anthropogenic proportion of CO and NO2 the two interaction effects with the NDVI

were introduced in order to capture the CO and NO2 sources resulting from the ecosystem.

CO2(S, t) = NDVI(S, t)βNDV I + CO(S, t)βCO + NO2(S, t)βNO2 (6)

+NO2(S, t)�NDVI(S, t) · βNN + CO(S, t)�NDVI(S, t) · βCN
+αNDV I ·NDVI(S, t)�wNDV I(S, t) + αCO ·CO(S, t)�wCO(S, t)

+αNO2 ·NO2(S, t)�wNO2(S, t) + NDVI(S, t) · zNDV I(t)

+z(t)1 + δw(S, t) + ε(S, t)

In the first two lines the fixed effects βNDV I , βCO, βNO2 , βNN and βCN for the covariates and the

interaction terms are introduced. The corresponding indices consist of abbreviations for the related

covariate, whereas NDV I denotes the Normalized Difference Vegetation Index, CO stands for Carbon

Monoxide, NO2 for Nitrogen Dioxide, NN marks the product of NO2 and NDV I as a covariate

and CN abbreviates the product of CO and NDV I. The relationship between the ecosystem and

CO2 is expected to depend on the region, due to different vegetation types and climate conditions,
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βNDV I βCO βNO2 βNN βCN αNDV I θNDV I αCO θCO

Estimate -0.250 0.250 0.069 0.086 0.157 0.525 1000.84 0.152 204.26

Stand. deviation 0.026 0.069 0.008 0.013 0.027 0.010 53.80 0.008 46.60

αNO2 θNO2 δ θ σ2
ε

Estimate 0.089 176.83 0.323 876.33 0.629

Stand. deviation 0.006 42.44 0.047 22.19 0.070

Table 1: Maximum Likelihood Estimates

which results in a spatial cross-correlation. This behavior is accounted for by the spatial random effect

wNDV I . Likewise the relationship between CO2 and the trackers for anthropogenic processes CO and

NO2 is expected to be spatially dependent, because of regional differences in technology. The resulting

spatial cross-correlation is covered through wCO and wNO2 . Additionally a temporal random effect

for the ecosystem influence zNDV I is used, in order to capture the seasonally changing source and sink

behavior. Residual spatial and temporal auto-correlation in the CO2 data is accounted for by w and z,

respectively. Using the EM-Algorithm, described in Fassò et al. [2009], Maximum likelihood estimates

of the parameter set and smoothed values for the latent random variables can be iteratively obtained.

The parameter estimates and their standard deviation are summarized in table 1 and equations 7 and

8. The fixed effects for NDV I,CO and NO2 cannot be interpreted separately, since the total effects of

the covariates on CO2 results from the combination of both fixed and random effects. The space-time

varying effects are discussed in detail in section 3.2. However, interpretable are the fixed effects for the

interaction terms βNN and βCN . Carbon Monoxide and Nitrogen Dioxide emissions originating from

the ecosystem through wildfires and heterotrophic respiration have a positive and significant impact on

local CO2 concentrations. Concerning the scale coefficients αNDV I ,αCO,αNO2 and δ it can be stated,

that a large weight is given to the spatial random effect of the NDV I, which confirms its high influence

on the variability of surface CO2 concentrations. As can be seen from the weights, the influence of

CO and NO2 is much smaller, as expected. The intermediate value for δ shows, that there is still

a sizable amount of residual spatial auto-correlation, which indicates that either there are influence

factors not considered in the model or that the fit of the spatial random fields could be improved

by a more complex spatial correlation structure (e.g. through anisotropic correlation). Furthermore

from the spatial range parameters θNDV I ,θCO,θNO2 and θ it can be seen, that the spatial influence

of anthropogenic sources is more local, than for the ecosystem. However, as the high value of the

nugget variance of the measurement error process shows, much uncertainty is left in the residuals,

which is mainly a result of the large measurement uncertainty of the instrument of the Greenhouse

Gases Observing Satellite. The estimated transition matrix and the variance-covariance matrix of the
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temporal innovations related to the temporal state vector z(t) = {zNDV I(t), z(t)} shown in equations

7 and 8 reveals a very persistent temporal cross-dependence and auto-correlation behavior, due to the

seasonality in the data.

Ĝ =


 0.801(0.03) 0.063(0.002)

−0.221(0.03) 0.902(0.04)


 (7)

Σ̂η =


 1.2 · 10−4

(3.2·10−7)
−1.6 · 10−4

(3.2·10−8)

−1.6 · 10−4
(1.9·10−8))

8.3 · 10−4
(3.2·10−7)


 (8)

Using Ψ̂, as the Maximum-Likelihood estimate of the parameter set

Ψ = {βNDV I , βCO, βNO2 , βNN , βCN , αNDV I , θNDV I , αCO, θCO, αNO2 , θNO2 , δ, θ, σ
2
ε ,G,Ση},

then the surface CO2 concentration can be predicted at a set of spatial locations S0 and for time point

t = 1, . . . , T as

ĈO2(S0, t) = NDVI(S0, t)β̂NDV I + CO(S0, t)β̂CO + NO2(S0, t)β̂NO2 (9)

+NO2(S0, t)�NDVI(S0, t) · β̂NN + CO(S0, t)�NDVI(S0, t) · β̂CN
+α̂NDV I ·NDVI(S0, t)�wT

NDV I(S0, t) + α̂CO ·CO(S0, t)�wT
CO(S0, t)

+α̂NO2 ·NO2(S0, t)�wT
NO2

(S0, t) + NDVI(S0, t) · zTNDV I(t)

+zT (t)1 + δ̂wT (S0, t),

where zTNDV I(t) = E
Ψ̂

[
zNDV I(t)|CO2

obs
]
and zT (t) = E

Ψ̂

[
z(t)|CO2

obs
]
is the Kalman smoother

output with CO2
obs as the n× T observation matrix and

wT
NDV I(S0, t) = E

Ψ̂

[
wNDV I(S0, t)|CO2

obs
]

(10)

wT
CO(S0, t) = E

Ψ̂

[
wCO(S0, t)|CO2

obs
]

wT
NO2

(S0, t) = E
Ψ̂

[
wNO2(S0, t)|CO2

obs
]

wT (S0, t) = E
Ψ̂

[
w(S0, t)|CO2

obs
]

are the estimated conditional expectations of the latent spatial random variables. The according

prediction variance-covariance matrix V ar
Ψ̂

[
ĈO2(S0, t)|CO2

obs
]
can be obtained by evaluating the

conditional variances and covariances of the latent random variables in equation 9. The smoothed

predictions and prediction errors can be used to produce dynamic maps. The set of prediction locations

used in this study consists of a 0.5◦ × 0.5◦ grid, bounded by the same latitude and longitude limits,

as the observed data, and an applied land/ocean mask. In figure 9 the temporal average prediction of

the surface CO2 concentration and its prediction standard error is depicted over the european area.
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Figure 9: Predicted temporal average surface CO2 concentration (Left) and its prediction standard

error (Right) in ppm
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Figure 10: Temporal average RMSE, Unit: ppm

As can be seen in the left panel of figure 9, on average lower CO2 concentrations can be observed

in the northern region above 45◦N , in areas with much vegetation and in coastal areas. In contrast,

higher concentrations are dominant in southern areas with less vegetation and in mountain areas. The

pattern of the average prediction standard error, shown in the right panel of figure 9, is characterized

by elevated prediction uncertainty in the northern prediction area, where the CO2 surface data is very

sparse, especially in winter times. Furthermore a higher prediction error can be observed in sparse

vegetation regions, like in mountains, and as well in areas with much vegetation. Besides the estimated

prediction uncertainty, a 10-fold cross-validation study was performed in order to evaluate the model

fit and the out-of-sample prediction performance. In figure 10 the resulting RMSE is depicted over

space, whereas no clear spatial pattern of elevated prediction errors can be identified. As can be

seen from table 2 the total RMSE from the cross-validation study amounts to 6.201ppm. Compared

with the expected total prediction error (RMSPE) of 8.828ppm the model performs even better than

expected. The corresponding adjusted R2 is with 0.894 very high, especially when compared with
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RMSPE RMSE R2
adj

8.828 6.201 0.894

Table 2: Predictive power

Figure 11: Ecosystem influence on surface CO2 concentrations in January 2010 (Left) and July 2010

(Right)

other applications in the field of environmental processes. The model was able to capture around 90%

of the variability in the surface CO2 concentration data.

3.2 Spatio-temporal smoothing and CO2 sources and sinks

The special focus of this article is to quantify CO2 sources and sinks and their spatio-temporal distri-

bution. For this purpose the estimated fixed and random effects for NDV I,CO,NO2 and the product

terms have to be analyzed separately. In order to obtain an estimate for the influence of the ecosystem

on surface CO2 concentrations (ÊCO) at the set of prediction locations S0 and at time point t, the

terms related to the NDV I in equation 9 are collected:

ÊCO(S0, t) = NDVI(S0, t)β̂NDV I + NO2(S0, t)�NDVI(S0, t) · β̂NN (11)

+CO(S0, t)�NDVI(S0, t) · β̂CN + α̂NDV I ·NDVI(S0, t)�wT
NDV I(S0, t)

+NDVI(S0, t) · zTNDV I(t).

The temporal averages of ÊCO for January (left) and July 2010 (right) are depicted in figure 11.

In the two maps, it can be seen, that as already explained in section 2.1, the terrestrial ecosystem

seasonally changes from a CO2 source from late autumn to early spring into a sink from late spring to

early autumn. The sink behavior in summer is thereby more pronounced in the north-east of Europe

and in coastal areas, whereas the source activity of the ecosystem is stronger in central and south-
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Figure 12: Spatial average of ecosystem influence on surface CO2 concentrations over time, Unit: ppm
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Figure 13: Spatio-temporal coefficient for NDVI over time

west Europe and also at the coast. Both source and sink intensity is higher in regions with much

vegetation, as expected. Regions with elevated source activity in winter lead to an increase in the local

surface CO2 concentration between 5 and 10ppm and the strong north-eastern sink in summer causes

CO2 concentrations to be reduced by 10 to 15ppm. In figure 12 the spatial average of the predicted

ecosystem influence is shown over time. By comparing the figure with the spatial average of the CO2

observation data in figure 5, it can be stated, that the shape of both plots are very similar with the two

peaks in winter, which results from the two shifted seasonal cycles of the GPP and the heterotrophic

respiration originating from the ecosystem. The model was able to describe the space-time varying

source and sink activity of the ecosystem and is able to quantify the Net Ecosystem Production and

its seasonal behavior, as already described in Jiang et al. [2012]. On average, the ecosystem reduces

surface CO2 concentrations up to 10ppm between May and September and leads to an increase in CO2

concentrations up to 5ppm between October and April. The annual averages of the years 2010 and 2011

are close to zero and amounted to −0.4ppm and 0.13ppm, which means that the ecosystem was a small

net sink in 2010 and a small CO2 source in 2011. In figure 13 the space-time varying coefficients for the

NDV I are depicted. In comparison with figure 8, it can be stated, that the model was able to replicate

the space-time varying dependence structure between the NDVI and the surface CO2 concentrations.
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Figure 14: Anthropogenic influence on surface CO2 concentration in January 2010

Between October and April, the spatial average coefficient (like the linear correlation between NDV I

and CO2) tends to be positive and it is mostly negative between May and September.

The anthropogenic influence on surface CO2 concentration ( ̂ANTHRO) is now analyzed by col-

lecting the fixed and random effects related to CO and NO2:

̂ANTHRO(S0, t) = CO(S0, t)β̂CO + NO2(S0, t)β̂NO2 + α̂CO ·CO(S0, t)�wT
CO(S0, t) (12)

+α̂NO2 ·NO2(S0, t)�wT
NO2

(S0, t).

The temporal average prediction of the anthropogenic influence on surface CO2 concentrations ̂ANTHRO

for January 2010 is shown in figure 14. The spatial pattern of anthropogenic CO2 emission activity is

closely related to urbanization. Emissions are high in strongly industrialized and populated regions,

as for example in Germany, the Benelux countries, the Lombardi region and around most big cites,

like Moscow, London, Warsaw, Teheran, Tokio and New-Delhi. The biggest anthropogenic CO2 source

can be identified in China. In the urbanized areas, the anthropogenic activity led to an elevated level

of surface CO2 concentration between 4 and 5.5ppm in January 2010, whereas in China the maximum

was 8ppm. The anthropogenic emissions also follow a seasonal cycle, as can be seen in figure 15. The

same seasonal pattern was already identified in Rotty [1987], where monthly fossil fuel consumption

data was used in order to describe the seasonal CO2 emission cycle. The anthropogenic influence on

surface CO2 concentrations seasonally varies between 2 and 2.6ppm in the spatial average. Likewise

the peak-to-valley distance is around 25% of the mean level, which is also confirmed by the study of

[Rotty, 1987][p. 195]. Due to the increased electricity and fuel demand in winter months in the north-

ern hemisphere, which result from the low amount of daylight and the cold temperatures, the CO2

emissions peak in January-February and are the lowest in June-July, where the electricity and fossil

fuel consumption is the lowest. It becomes obvious, that CO2 emissions and its seasonal cycle strongly

depends on climate conditions, for example a warm winter leads to lower fossil fuel consumption and

consequently to lower CO2 emissions. This relationship becomes important, while evaluating national
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Figure 15: Spatial average of anthropogenic influence on surface CO2 concentrations over time, Unit:

ppm
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Figure 16: Anthropogenic influence on surface CO2 concentrations in Germany on the 16th of October

2009

CO2 balances, because inter-annual emission reductions may not solely result from reduction efforts,

but also from climate anomalies.

4 Validation of CO2 emissions reports

The predictions of the anthropogenic influence on surface CO2 concentrations from equation 12 can

now be used to monitor relative annual changes in national CO2 emissions. Therefore land masks

for several northern hemisphere countries have been created using shapefiles, which can be freely

downloaded at http://gadm.org/. In that way, the grid cells, which are located within the respective

country borders, can be selected, as can be seen for Germany for example in figure 16 for the 16th of

October 2009. The next step is to sum up the anthropogenic CO2 concentration anomalies over all
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Figure 17: Anthropogenic influence over time in Germany accumulated over space

grid cells belonging to the country. The corresponding time series of sums for the Germany example

can be seen in figure 17. The cumulated anthropogenic CO2 concentration anomalies are used as an

approximation for national CO2 emissions. The absolute values are not comparable with emissions,

since the anthropogenic CO2 concentration anomalies are expressed in ppm. But relative changes

should be directly comparable with changes in CO2 emissions. In this study annual change rates are

considered. In effect, the change in the cumulated sum over the year is computed for 2010 and 2011,

since these are the only years with full record. These rate of changes are used for a comparison with

official reports on national greenhouse gas inventories within the UNFCCC (UNFCCC [2015]) and

a more scientifically derived estimate from the Emission Database for Global Atmospheric Research

(EDGAR, documented in Olivier et al. [2015]), where aggregated country emissions, using emission

factors for different sectors, are spatially gridded using proxy variables, such as population density and

road network. In table 3 the annual rate of change in CO2 emissions of the UNFCCC reports and

the EDGAR emissions data are compared with the rate of change of the anthropogenic influence on

surface CO2 concentrations, obtained from the model predictions. The first thing to notice is, that

CO2 emissions have experienced a strong decline in central European countries from 2010 to 2011.

However, it has to be noted, that a large proportion of this decline is attributed to the differing climate

conditions in both years. Compared to 2011, the winter months in 2010 were much colder, resulting in

an increased demand in heating, which led to a fossil fuel consumption and increased CO2 emissions in

winter. For example, according to Wetterdienst [14.07.2016], the average temperature in Germany for

the months January, February and December 2010 was −0.75◦C, compared to an average of 2.58◦C in

2011. This strengthens the need for accounting for climate anomalies in the inter-annual comparison

of CO2 emissions. Nevertheless, strong CO2 reduction were realized in France, the UK, Hungary and

the Netherlands, whereas increases can be found in Japan, South Korea and Spain.

By comparing the estimated rate of changes from the three methods, it can be stated, that the

rates obtained from the model output of equation 12 are close to the reported values from EDGAR
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Model EDGARv4.3 UNFCCC

Germany -2.27% -2.31% -2.28%

France -4.62% -7.42% -6.71%

Poland -1.74% -1.50% -0.57%

Italy -3.46% -2.45% -2.74%

UK -7.88% -7.67% -8.11%

Spain 0.20% 0.25% 0.19%

Hungary -3.92% -3.65% -3.50%

Czech Republic -2.25% -1.05% -1.77%

Netherlands -5.36% -6.23% -7.33%

Japan 3.01% 3.04% 4.16%

South Korea 2.82% 2.27% 4.96%

Table 3: Estimated changes of national CO2 emissions from 2010 to 2011

and the UNFCCC, in terms of direction and magnitude. However, there is no clear tendency, whether

the results from the model are closer to that of the UNFCCC or the EDGAR. The advantage of using

an observation based statistical model is that it is more objective, it requires less assumptions and

less conventions have to be made in order to clarify reporting standards and definitions of emissions

factors. In that way, it saves a lot of costs for maintaining a monitoring and reporting infrastructure.

In effect, it is much easier to apply and less prone to errors and inaccuracies, resulting from emission

factors not accounting properly for differences in technology. Furthermore, it can be applied globally

and not only for countries, who agreed for the reporting and monitoring standards. It can also be used

as an instrument of verification and as a device for trust building, since it cancels out the opportunity

to manipulate reports. Consequently, it potentially stabilizes climate negotiation processes through

building trust in the reported CO2 emissions.

5 Concluding Remarks

The present paper offers a helpful perspective on the analysis of sources and sinks of CO2. It provides

a spatio-temporal statistical methodology, that is purely data-driven, which is the main advantage over

existing approaches from the natural science and from the reporting infrastructure, since it does not rely

on critical assumptions on physical dynamics and emission factors and many more. Based on satellite

data on surface CO2 concentrations and on covariate data, such as the NDVI and the co-polluters
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NO2 and CO, it is possible to derive estimates of the Net Ecosystem Production and anthropogenic

emissions. Especially, objective and reliable estimates of anthropogenic sources are of importance in

a political framework. Beginning in 2016, all countries to the United Nations Framework Convention

on Climate Change (UNFCCC) will report their national emission plans as Nationally Determined

Contributions (NDCs), which are the basis of the Paris agreement on climate change. All NDCs are

based on inventory data, although they take very diverse forms, e.g. based on different sectors, different

baseline years, make different hypotheses of future economic development, and different accounting

approaches. In this context, it is critical that emissions baselines and future reduction efforts can be

compared among nations on the basis of transparent, consistent, verifiable and up-to-date information.

In the past two decades, evidence of sustained climate change and its negative impacts on human welfare

has fostered a consensus among nations to act collectively to reduce emissions in the future. During

the same period, fossil CO2 emissions have continued to increase, and in 2015, they were 54% above

the levels of 1990. The recent increase in emissions since the late 1990s has occurred overwhelmingly

in developing nations, which contributed 69% of the global emissions in 2014, as compared to 32% in

1990, the baseline year of the Kyoto Protocol. China, which accounted for almost half of this share,

has recently put a considerable effort in revising its energy statistics in years since 2000. While this has

definitely resulted in better estimates of the real fossil-fuel consumption in this period, the uncertainty

levels have not decreased by much and rumors of under-reporting are repeatedly circulating (New York

Times, 4.11.2015, Nature Climate Change 2012). Because emission inventories in developing nations

are overall less accurate than they are in developed countries, the uncertainty associated with fossil CO2

emissions and their trends has increased up to the point where it could undermine the credibility and the

stability of future climate agreements. The NDCs of the national emission reduction plans, that form

the basis of the Paris agreement, require robust emissions mitigation efforts, as well as the monitoring

of energy- and fossil-fuel intensive national activities to establish a global MRV infrastructure. In that

way, a data-driven spatio-temporal statistical methodology could be a promising MRV-tool. Likewise it

is useful for analyzing the carbon sequestration potential of the terrestrial vegetation, since the method

allows for a global monitoring of the Net Ecosystem Production in narrow time intervals. Finally, it

provides a further step for demystifying the global distribution of CO2 sources and sinks.
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