Self-enforcing environmental agreements and international trade

Thomas Eichner, University of Hagen Rüdiger Pethig, University of Siegen

Motivation

- Carbon emissions generate global climate damage
- Restoring efficiency requires **global** cooperation However: *Global* cooperation is unlikely to come soon
- Therefore: Focus on sub-global climate cooperation/coalitions:
 One group of countries (*"climate coalition"*) takes joint action
 All other countries (*"fringe countries"*) act non-cooperatively

Motivation

- A coalition of sovereign countries cannot prevail unless it is stable (or *self-enforcing*) (Barrett 1994)
- A coalition is *stable*

(or, equivalently, an international environmental agreement is *self-enforcing*) if no non-member has an incentive to join (external stability) and no member has an incentive to defect (internal stability)

• **Objective**: Study determinants of existence, of width and depth of stable climate coalitions

Literature on formation of climate coalitions

• **Basic model** of coalition literature consists of identical countries

Welfare of country *i*: $u_i = V(e_i) - D\left(\sum_{i=1}^{j=1}\right)$

Total welfare from fossil of country *i* Welfare from fossil energy consumption (V' > 0, V'' < 0) Climate damage from world carbon emissions (D' > 0, D'' > 0) $\begin{cases} e_i = \text{fossil energy consumption} \\ = \text{carbon emissions} \end{cases}$

- Governments fix domestic emissions (= emissions caps)
- No modeling of the economies of individual countries
- No international trade

Literature on coalition formation

• In the basic model of the literature,

either: Fringe countries and the coalition play Nash

or: Coalition is **Stackelberg** leader and all fringe countries follow

• In our paper: Exclusive focus on Stackelberg approach

• Outcome of Stackelberg approach in the *basic model*: Stable coalition consists of at most 4 countries if negative emissions are excluded

(Barrett 1994, Diamantoudi & Sartzetakis 2006, Rubio & Ulph 2006)

Objective of our paper

- **Model** the countries' economies (production, consumption, markets)
- Allow for international trade
- **Investigate** the impact of that extension on width, depth and stability of coalitions
- **Compare** the results with those of the *basic model*

Preview on main conclusions

• *Good news*: With international trade, stable coalitions *may* be much wider than in the *basic model*

• *Bad news I*: With international trade, stable coalitions are not deep regardless of how wide they are

• *Bad news II*: In autarky, stable coalitions are neither wide nor deep

Outline of presentation

- 1 The problem (done)
- 2 The model
- 3 Climate coalition as Stackelberg leader
 - 3.1 Climate coalitions and coalition sizes
 - 3.2 Stability of coalitions
- 4 On the role of international trade
- 5 Extensions (work in progress)

The model

The model

$$\begin{aligned} x_i^s &= T\left(e_i^s\right), \quad i = 1, ..., n & \text{Production possibility} & (1) \\ u_i &= V\left(e_i^d\right) + x_i^d - D\left(\sum_j e_j^d\right) & \text{Utility of representative} & (2) \\ \sum_j x_j^s &= \sum_j x_j^d & \text{and } \sum_j e_j^s = \sum_j e_j^d & \text{World market equilibria for} & (3) \\ e_i^d &= e_i, \quad i = 1, ..., n & \text{Cap } e_i \text{ on domestic} & (4) \\ \end{aligned}$$

Parametric version of the functions *T*, *V* and *D*:

$$T\left(e_{i}^{s}\right) = \overline{x} - \frac{\alpha}{2}\left(e_{i}^{s}\right)^{2}, \qquad V\left(e_{i}^{d}\right) = ae_{i}^{d} - \frac{b}{2}\left(e_{i}^{d}\right)^{2}, \qquad D\left(\sum_{j}e_{j}^{d}\right) = \frac{1}{2}\left(\sum_{j}e_{j}^{d}\right)^{2}$$

The model

• For every given set of binding emissions caps, $(e_1,...,e_n)$, there exists a unique general competitive equilibrium

• In equilibrium, the welfare of an individual country is (shown to be)

$$W^{i}\left(e_{1},\ldots,e_{n}\right) \coloneqq V\left(e_{i}\right) + T\left(\frac{\sum_{j}e_{j}}{n}\right) - T'\left(\frac{\sum_{j}e_{j}}{n}\right) \cdot \left(\frac{\sum_{j}e_{j}}{n} - e_{i}\right) - D\left(\sum_{j}e_{j}\right)$$

Interdependence through international trade

Interdependence through climate externality

Absence of cooperation (BAU) as a benchmark

• Standard *n*-country Nash game

Country *i* solves: $\max_{e_i} W^i(e_1, ..., e_i, ..., e_n)$ for given $(e_1, ..., e_{i-1}, e_{i+1}, ..., e_n)$

• **Results:** Uniform emission caps: $e_i = e_o$ for all *i*

Emission caps too large (i.e. too little mitigation)

No trade

Climate coalition and fringe

- Two groups of countries: $C := \{1, 2, ..., m\}$ with C for <u>Coalition</u> $F := \{m+1, ..., n\}$ with F for <u>Fringe</u> $m \in \{1, 2, ..., n\}$ = exogenous coalition size
- Coalition: Payoff = $\sum_{j \in C} W^j$ Strategy = $s_c := me_c$ (with $e_i = e_c$ for all $i \in C$)
- Fringe countries:

 $Payoff = W^{i} \text{ (same as in BAU)}$ Strategy = e_{f} (with $e_{i} = e_{f}$ for all $i \in F$)

Fringe countries as Nash players

• Fringe behavior: Each fringe country plays Nash against the coalition and against all fellow fringe countries

• The reaction function of an individual fringe country can be converted into an 'aggregate reaction function' *R* such that

$$s_f = R(s_c, m)$$
 with $s_f := (n-m)e_f$, $s_c := me_c$ and with slope $R_{s_c} \in \left[-1, 0\right]$

R looks like a reaction function for the entire group of fringe countries But important: All fringe countries continue acting non-cooperatively!

Welfare functions of *individual* countries

• Fringe countries

$$W^{f}\left(s_{c}, s_{f}, m\right) := V\left(\frac{s_{f}}{n-m}\right) + T\left(\frac{s_{c}+s_{f}}{n}\right) - T'\left(\frac{s_{c}+s_{f}}{n}\right) \cdot \left(\frac{s_{c}+s_{f}}{n} - \frac{s_{f}}{n-m}\right) - D\left(s_{c}+s_{f}\right)$$

• Coalition countries

$$W^{c}\left(s_{c}, s_{f}, m\right) := V\left(\frac{s_{c}}{m}\right) + T\left(\frac{s_{c} + s_{f}}{n}\right) - T'\left(\frac{s_{c} + s_{f}}{n}\right) \cdot \left(\frac{s_{c} + s_{f}}{n} - \frac{s_{c}}{m}\right) - D\left(s_{c} + s_{f}\right)$$

• Recall: Every tuple (s_c, s_f) maps into a competitive general equilibrium

Stackelberg equilibrium

• Coalition of given size *m* chooses its strategy s_c first Fringe responds with the 'aggregate strategy' $s_f = R(s_c, m)$

- Stackelberg equilibrium = pair of strategies (s_c^*, s_f^*) such that $s_c^* = \arg \max mW^c [s_c, R(s_c, m), m]$ and $s_f^* = R(s_c^*, m)$
- There is a unique Stackelberg equilibrium for every given coalition size *m*

Welfare of coalition country in Stackelberg equilibrium

- Stackelberg equilibrium = pair of strategies (s_c^*, s_f^*)
- Equilibrium welfare:

$$W^{c}\left(s_{c}^{*}, s_{f}^{*}, m\right) := V\left(\frac{s_{c}^{*}}{m}\right) + T\left(\frac{s_{c}^{*} + s_{f}^{*}}{n}\right) - T'\left(\frac{s_{c}^{*} + s_{f}^{*}}{n}\right) \cdot \left(\frac{s_{c}^{*} + s_{f}^{*}}{n} - \frac{s_{c}^{*}}{m}\right) - D\left(s_{c}^{*} + s_{f}^{*}\right)$$

Stackelberg equilibria for alternative (given) coalition sizes

• Formalization:

$$e_c^* = \mathcal{E}^c(m); \quad e_f^* = \mathcal{E}^f(m); \quad s_c^* = m \mathcal{E}^c(m); \quad s_f^* = (n-m) \mathcal{E}^f(m)$$
$$\mathcal{W}^c(m) := \mathcal{W}^j[m\mathcal{E}^c(m), (n-m)\mathcal{E}^f(m), m] \quad \text{for } j \in C$$
$$\mathcal{W}^f(m) := \mathcal{W}^j[m\mathcal{E}^c(m), (n-m)\mathcal{E}^f(m), m] \quad \text{for } j \in F$$

 $\mathcal{E}^{c}(m), \mathcal{W}^{c}(m)$ etc. are the values of e_{c}, w_{c} etc. in the Stackelberg equilibrium with coalition of size $m \in [1, n]$

Coincidence of Stackelberg equilibrium and BAU

• **Result:**

The Stackelberg equilibrium with coalition of size $m \in [1, n]$ coincides with the BAU equilibrium, if and only if $m = \tilde{m} := \frac{(\alpha + b + n)n^2}{\alpha(2n-1) + (1+b)n^2} > 1$

Remark:

For analytical convenience we take the interval [1, n] to be the domain of coalition sizes

Comparison of Stackelberg equilibria with BAU equilibrium

Analytical results:

Consider the transition from BAU to Stackelberg equilibrium.

(i)
$$\mathcal{E}^{c}(m) \geq e_{o} \iff m \leq \tilde{m},$$

(ii)
$$[m\mathcal{E}^{c}(m) + (n - m)\mathcal{E}^{f}(m)] \geq ne_{o} \iff m \leq \tilde{m},$$

(iii)
$$\begin{cases} \mathcal{U}^{c}(m) > W_{o} > \mathcal{U}^{f}(m) \\ \mathcal{U}^{c}(m) = W_{o} = \mathcal{U}^{f}(m) \\ \mathcal{U}^{f}(m) > \mathcal{U}^{c}(m) > W_{o} \end{cases} \iff m \begin{cases} < \\ - \\ > \end{cases} \tilde{m}$$

Numerical results: Example 1 $(n = 10; \tilde{m} = 4.881)$

Figure 3: Emissions caps and total emissions in Example 1

Numerical results: Example 1 $(n = 10; \tilde{m} = 4.881)$

Figure 4: Welfare and aggregate welfare in Example 1

Stability of coalitions

• *Definition:* The coalition of size $m \in \{2,...n\}$ is stable, if

 $[\boldsymbol{W}^{c}(m) - \boldsymbol{W}^{f}(m-1)] \ge 0 \qquad \text{(internal stability condition)}$ and $[\boldsymbol{W}^{f}(m) - \boldsymbol{W}^{c}(m+1)] \ge 0 \qquad \text{(external stability condition)}$

• **Question:** Do stable coalitions exist ?

Checking Example 1 for stable coalition $(n = 10; \tilde{m} = 4.881; m^* = 5)$

Figure 4: Welfare and aggregate welfare in Example 1

• **Result**: If the coalition of size m^* is stable, then $m^* \ge \tilde{m}$ (= necessary condition for stability)

Checking Example 1 for stable coalition $(n = 10; \tilde{m} = 4.881; m^* = 5)$

• Question: Do stable coalitions exist with size $m^* \ge \tilde{m}$? Answer: Yes, in all of our numerous examples

A coalition of size $m^* \in \mathbb{N}$ is stable iff both curves are positive at $m=m^*$ Both curves have positive values in a small interval only (see Figure) The only integer in that interval is $m^* = 5 > \tilde{m} = 4.881$ Example 1: Share of countries in stable coalition = 50% !

Checking Example 1 for stable coalition $(n = 10; \tilde{m} = 4.881; m^* = 5)$

Question: How much larger than *m̃* is the stable coalition size *m*^{*}?
 Answer: *m*^{*} is the smallest or second smallest integer larger than *m̃* (in all of our numerous examples)

Intuition: Why is m^* so close to \tilde{m} ?

Figure 4: Welfare and aggregate welfare in Example 1

Role of parameter α for coalition stability

- Question: What are the determinants of the size of \tilde{m} ? Answer: Essentially, the size of \tilde{m} depends on the parameter α Under mild restrictions: $\frac{d\tilde{m}}{d\alpha} > 0$ and $\lim_{\alpha \to \infty} \tilde{m} = \frac{n^2}{2n-1} \approx \frac{n}{2} + \varepsilon$
- Variation of α while all other parameters are as in Example 1

Example 1 ↓

α	1	10	50	100	500	1000	∞
ñ	1.46	1.75	2.62	3.25	4.57	4.88	5.26
m^{*}	2	2	3	4	5	5	6

Role of parameter α for coalition stability

Interpretation:

- α is the parameter in the transformation function $T(e_i^s) = \overline{x} \frac{\alpha}{2}(e_i^s)^2$
- Increasing α corresponds to rising marginal extraction costs of fossil fuel

 \Rightarrow The more progressive extraction costs are,

- the larger the stable coalition,
- the smaller total equilibrium emissions,
- the smaller the potential gain from cooperation.

Messages from Example 1 (and from *all* of our numerical examples)

- Good news: For any size of *n* the share of countries in stable coalition *may* be up to 40% 50%
 - $\Rightarrow Stark contrast to the basic model (Rubio et al. (2006) and Diamantoudi et al. (2006)$

- **Bad news:** m^* is the smallest (or second smallest) integer larger than \tilde{m}
 - ⇒ Stable coalition *does* reduce total emissions compared to BAU
 But by a very small amount only ...

On the role of international trade

• Comparison of the scenarios of free trade and autarky

• We switch from free trade to autarky by

replacing the world-market clearing conditions

$$\sum_{j} x_{j}^{s} = \sum_{j} x_{j}^{d}$$
 and $\sum_{j} e_{j}^{s} = \sum_{j} e_{j}^{d}$

with the domestic-market clearing conditions

$$x_i^s = x_i^d$$
 and $e_i^s = e_i^d$ for $i = 1, ..., n$ (prices $p_{xi} \equiv 1, p_{ei}, \pi_i$)

Country *i*'s welfare with and without international trade

• Recall: Welfare in case of **free trade**:

$$W^{ti}\left(e_{1},...,e_{n}\right) \coloneqq V\left(e_{i}\right) + T\left(\frac{\sum_{j}e_{j}}{n}\right) - T'\left(\frac{\sum_{j}e_{j}}{n}\right) \cdot \left(\frac{\sum_{j}e_{j}}{n} - e_{i}\right) - \underbrace{D\left(\sum_{j}e_{j}\right)}_{i} + \underbrace{D\left(\sum_{j}e_{j}\right)}_{i}$$

Interdependence through international trade

Interdependence through climate externality

• Welfare in case of **autarky**:

$$W^{ai}(e_{1},...,e_{n}) := V(e_{i}) + T(e_{i}) - D\left(\sum_{j} e_{j}\right) = \underbrace{ae_{i} - \frac{\alpha+b}{2}e_{i}^{2} - \overline{x} - \frac{1}{2}\left(\sum_{j} e_{j}\right)^{2}}_{\sum}$$

Parametric version of autarky welfare

⇒ The functional form of welfare in autarky is exactly the same as in the *basic model* of the coalition formation literature

On the role of international trade

• Our model in autarky coincides with the *basic model*

Hence: The results of Barrett (1994), Diamantoudi et al. (2006) and Rubio & Ulph (2006) apply

 \Rightarrow In autarky, stable coalitions are not wide $(m \le 4)$

• Our new result:

In all of our numerical examples of the autarky regime stable coalitions are not deep

 $(m_a^*$ is the smallest or second smallest integer *m* larger than \tilde{m}_a)

• Conclusion:

Trade tends to widen but fails to deepen stable coalitions

Concluding remarks

- We have extended the *basic model* of the coalition formation literature by considering production, consumption and international trade
- We have reexamined and characterized coalition stability assuming the coalition acts as a Stackelberg leader
- **Result 1:** In the world economy with stable coalition, total emissions fall short of BAU emissions to a very small extent only That is true for the scenarios of autarky *and* free trade
- **Result 2:** Free trade tends to widen stable coalitions but fails to deepen them

Caveat

• Robustness of results is unclear

because analytical complexity requires resorting to simple parametric functions and to numerical calculations

• Our study shares this limitation with much of pertaining literature

Follow-up work (in progress) (I)

• Coalition as Nash player rather than as Stackelberg leader

What is the difference in outcome?

• **Results**:

- Nash stable coalitions consist of two countries at most
- World emissions with stable coalitions are only slightly less than in BAU
- Trade liberalization is bad for the climate, the coalition countries' welfare and for the aggregate welfare of all countries.

Follow-up work (in progress) (II)

• Impact of tariffs on size and performance of stable coalitions when coalitions are Stackelberg leaders

• Results:

- Size of stable coalition shrinks when coalitions set tariffs in addition to their cap-and-trade schemes
- The smaller stable coalitions reduce total emissions more effectively than the larger stable coalitions without tariffs

Thank you for your attention

- Barrett, S. (1994): Self-enforcing international environmental agreements. *Ox*ford Economic Papers 46, 878-894.
- Carraro, C. and D. Siniscalco (1993): Strategies for the international protection of the environment. *Journal of Public Economics* 52, 309-328.
- Diamantoudi, E. and E. Sartzetakis (2006): Stable international environmental agreements: An analytical approach. *Journal of Public Economic Theory* 8, 247-263.
- Finus, M. (2001): *Game Theory and International Environmental Cooperation*, Edward Elgar, Cheltenham.
- Hoel, M. (1992): International environmental conventions: the case of uniform reductions of emissions. *Environmental and Resource Economics* 2, 141-159.
- Rubio, S.J. and A. Ulph (2006): Self-enforcing agreements and international trade in green-house emission rights. *Oxford Economic Papers* 58, 233-263.